
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1995

Space sharing job scheduling policies for parallel
computers
Ismail Mohamed Ismail
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ismail, Ismail Mohamed, "Space sharing job scheduling policies for parallel computers " (1995). Retrospective Theses and Dissertations.
10914.
https://lib.dr.iastate.edu/rtd/10914

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10914&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10914&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F10914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/10914?utm_source=lib.dr.iastate.edu%2Frtd%2F10914&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the micro£Uin master. UMI
films the text directfy from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from aiQr of conq)uter printer.

The qnality of this reprodaction is dqtendent upon the qnali^ of the
copy snbmitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard marginc
and improper alignment can adverse^ affect reproduction.

In the unlikely event that the author did not send XJMI a complete
manuscript and there are missing pages, these will be noted. Also, if
•unauthorized copyright material had to be removed, a note win indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs inchided in the original maouscr^t have been reproduced
xerographically in this coi^. Higher qualiQr 6" x 9" black and white
photographic prints are available for ai^ photographs or illustrations
appearing in this copy for an additional charge. Contact UMI direct^
to order.

A Bell & Hcjweii Information Company
300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA

313.'761-4700 800/521-0600

www.manaraa.com

www.manaraa.com

Space sharing job scheduling policies for parallel computers

by

Ismail Mohamed Ismail

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Department: Electrical and Computer Engineering
Major: Computer Engineering

Approved:

^ChWge of Major Work

For the Major Department

For the Graduate College

Iowa State University

Ames, Iowa

1995

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

DMI Number: 9531750

DMI Microform 9531750
Copyright 1995, by OHI Company. All rights reserved.

7his microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, HI 48103

www.manaraa.com

ii

TABLE OF CONTENTS

ABBREVIATIONS iii

ACKNOWLEDGMENTS v

ABSTRACT vi

1 INTRODUCTION 1

2 TRADITIONAL AND UNLIMITED FOLDING 29
STATIC SPACE SHARING POLICIES

3 ADAPTIVE STATIC SPACE SHARING POLICIES 55

4 DYNAMIC SPACE SHARING POLICIES 78

5 CONCLUSIONS AND FUTURE WORK 99

REFERENCES 102

www.manaraa.com

iii

ABBREVIATIONS

DEQP: dynamic equipartitioning

DFCFS: dynamic first come first served

DPROP: dynamic proportional

DPROP-SH: dynamic proportional/shorter jobs favored

DPROP-SM: dynamic proportional/smaller jobs &vored

DSMJF: dynamic smallest job first

EPFP: even partitioning of fi-ee processors

FCFS: first come first served

FCFSUF: first come first served/unlimited folding

FF: first fit

FF+FIFO: first fit then first in first out

FFCFS: folding first come first served

FFDS: first fit decreasbg size

FFDS+FIFO: first fit decreasing size then first in first out

FFF: folding first fit

FFIS: first fit increasing size

FFIS+FIFO: first fit increasing size then first in first out

FFITD: first fit increasing total demand

FIFO: first in-first out

FSJF: folding smallest job first

LOJFUF: longest job first/unlimited folding

MFFF: multifolding first fit

MFLOJF: multifolding longest job first

MFSJF: multifolding smallest job first

MFSHJF: multifolding shortest job first

MFSTDF: multifolding smallest total demand first

www.manaraa.com

iv

MISP: monotonically increasing speedup

PSCDF: preemptive smallest cumulative demand first

PSNPF: preemptive smallest number of processes first

RRjob: round-robin job

RRprocess: round-robin process

SCDF: smallest cumulative demand first

SHJFUF: shortest job first/unlimited folding

SNPF: smallest number of processes first

STDFUF: smallest total demand first/unlimited folding

www.manaraa.com

V

ACKNOWLEDGMENTS

I wannly thank my advisor Jim Davis for his help, encouragement, cooperation, and kindness.

His help was always forthcoming when needed.

I would also like to thank the other members of my committee, Albert Baker, John Gustafson,

Doug Jacobson, and Charles Wright for their help and feedback.

I thank my mother and &ther. My father has always wanted me to seek the best. His love and

trust in me have been unwavering. Although my mother does not know how to read or write, she has

taught me that seeking knowledge requires serious effort and care. She is an example of honesty, gen­

erosity, dignity, and courage.

My special thanks to my wife. She has been supportive and patient. The nice environment she

created at home made my Ph.D. program much easier.

Thanks to the Department of Electrical and Computer Engineering for financially supporting

me through most of my program, and for providing a wonderful learning environment. The faculty has

been helpful and supportive and the staff professional and kind. Chip Comstock has helped me learn

how to teach and has been a wonderful fiiend. Dick Horton provided me with the opportunity to teach

courses in addition to supervising lab sessions. I thank them. Special thanks to Prasant Mohapatra for

his help and encouragement. Thanks to Patsy Wisecup, Linda Clifford, Shirley Calhoun, and Gloria

Wierda for their graceful administrative help.

www.manaraa.com

vi

ABSTRACT

The distinguishing characteristic of space sharing parallel job scheduling policies is that appli­

cations are allocated non-overlapping processor subsets. The interference among jobs is reduced, the

synchronization delays and message latencies can be predictable, and distinct processors may be allo­

cated to cooperating processes so as to avoid the overhead of context switches associated with tradi­

tional time-multiplexing.

The processor allocation strategy, the job selection criteria, and woikload characteristics are

fundamental &ctors that influence system performance under space sharing. Allocation can be static or

dynamic. The processor subset allocated to an ^plication is fixed under static space sharing, whereas

it can change during execution under dynamic space sharing. Static allocation can produce more pre­

dictable run times, permits a wide range of compiler optimizations (e.g., static data distribution and

binding), and avoids the processor releases and reallocations associated with dynamic allocation. Its

major problem is that it can induce high processor firagmentation.

In this dissertation, alternative static and dynamic space sharing poUcies that differ in the allo­

cation discipline and the job selection criteria are studied and compared. The results show that signifi­

cantly superior performance can be achieved under static space sharing if applications can be folded

(i.e., allocated fewer processors than they requested). Folding typically increases program efficiency

and can reduce processor fragmentation. Policies that increase folding with the system load are pro­

posed and compared to schemes that use unconstrained folding, no folding, and fixed maximum fold­

ing &ctor5. The adaptive policies produced higher and more stable system utilization, significantly

shorter mean response times, and good ^mess curves. However, unconstrained folding resulted in

considerably more severe processor fragmentation than no folding. Its advantage is that it exploits the

efiGciency improvement that typically results when an application is allocated fewer processors. Conse­

www.manaraa.com

vii

quently, it can produce shorter mean response times than no folding under medium to heavy loads.

Also because of this efficiency improvement, dynamic policies that reduce waiting times by

executing a large number of jobs simultaneously are more promising than schemes that limit the nimi-

ber of active jobs. However, limiting the number of active applications can be the superior approach

when folding does not improve qiplication efficiency.

www.manaraa.com

1

1 INTRODUCTION

1.1 Extended Abstract

Alternative topology-independent space sharing policies for scheduling parallel applications on

multiprogranuned homogeneous multiprocessors are studied and compared in this dissertation. The

distinguishing characteristic of space sharing is that programs are allocated distinct subsets of proces­

sors. The interference among jobs is reduced, the synchronization delays and message latencies can be

more predictable, and cooperating processes may be allocated to distinct processors so as to avoid the

overhead of context switches associated with traditional time-multiplexing.

Distributed-memoty multiprocessors have commonly been space shared [Seitz 90], and space

sharing has been proposed as the processor allocation strategy in two-level schedulers [Tucker 89]. In

these schedulers, the operating system kernel allocates processors to applications and user-level library

routines schedule application threads on the allocated processors. To reduce their cost, load balancing

and latency hiding are carried out at the user-level rather than by the kernel. Two-level schedulers have

been proposed for shared and distributed-memoiy machines [Tucker 89][Beckerle 92].

In a multiprogranuned parallel computing system, where several jobs may compete for proc­

essing elements, the functions of the job scheduling algorithm are job selection and processor alloca­

tion. For example, the algorithm may give priority to the job that arrived first and implement the space

sharing processor allocation strategy.

Space sharing can be static or dynamic. Under static space sharing, a program is allocated a

fixed subset of processors. The subset's size can be determined in two basic ways: (1) it is fixed a pri­

ori (e.g., by the compiler or user), and the algorithm allocates that many processors; or (2) applications

can be folded, that is, an application can be allocated fewer processors than it has requested. It is as­

sumed that a program, upon arrival, requests a number of processors from the allocation algorithm.

www.manaraa.com

2

Under dynamic space sharing, the processor subsets allocated to applications can change

during execution. Coordination between the allocation algorithm and the runtime system is needed. The

algorithm decides the changes, and the runtime system reconfigures the applications for execution on

the new subsets.

There are several advantages to space sharing over traditional process-based scheduling. First,

the context switches associated with time-multiplexing can be avoided. To achieve this, the loader or

the runtime system, in coordination with the job scheduling algorithm, can adjust the job's process

parallelism so that it is equal to the number of processors allocated and assign the processes to different

processors. Second, when the processes comprising an application execute on distinct processors, co-

scheduling (i.e., the simultaneous dispatching of cooperating processes) is guaranteed. Coscheduling is

essential when the processes interact extensively [Ousterhout 82]. Excessive synchronization delays

can result if some cooperating processes are not running.

Application folding and processor fragmentation are two fectors that strongly influence per­

formance under space sharing. Folding typically results in higher program efSciency. When an appli­

cation executes on fewer processors, the inefGciency caused by the serial fraction (Amdahl's law) and

similar load imbalances is reduced and less interprocess communication and synchronization is typi­

cally needed.

An algorithm produces processor fi^gmentation when it prevents processors from being allo­

cated. Under space sharing, there can be internal, external, and folding fragmentation. There is inter­

nal fragmentation when the number of processors allocated to a job exceeds the number it requested.

For example, the allocation algorithm in a mesh distributed-memory system may allocate a submesh to

a job whose processor demand is less than the submesh's size. Topology-based allocation is often used

in distributed-memory machines to reduce communication overhead and interconnection contention, but

it can produce high fr^mentation [Li 9l][Liu 94], A study of topology-dependent allocation is outside

the scope of this research.

www.manaraa.com

3

There is external fragmentation when free processors are not allocated to waiting applications.

It exists, for example, when the number of free processors is less than the sizes of the waiting ^plica­

tions and folding is not supported. Folding may reduce the average processor fr'agmentation in static

space sharing. If jobs can be folded arbitrarily, for example, a free processor need not remain idle if

there is a waiting request. However, folding can produce a different type of fragmentation, folding

fragmentation, which exists when there are idle processors and one or more folded jobs. It is defined as

(Pj^-Pg)/P, where is the total processor demand of the running applications, the number of

allocated processors, and P the number of processors in the target computer.

Topology-independent dynamic space sharing is free from processor fragmentation. Folding

fragmentation in static space sharing may be reduced if folding is limited; that is if applications wait

until they can receive some fraction, not necessarily fixed, of the number of processors they have re­

quested. Folding is unlimited or unconstrained if applications can be folded to any degree (i.e., they

are allowed to execute on a single processor independently of their processor requests).

The role of the allocation algorithm is fundamental. The efficiency of the computing system

depends on the scheduling effectiveness and the efficiency of programs. The scheduling effectiveness,

Sg, is used to measure the ability of a static space sharing algorithm to avoid processor fragmentation.

It is defined by the equation 5'g=Pj/min(/',/'j), where Pj is the current total processor demand. Topol­

ogy-independent dynamic space sharing can achieve 5^=1 because it is free from processor fragmenta­

tion.

The system efficiency, is defined by the equation:

Cs = — Se

where ^jimp is the efficiency of program j when it is allocated mj processors.

Folding has a strong influence on system efficiency as it can increase program efficiency and

scheduling effectiveness. Both must be high for to be high. Because it is difficult to write efficient

www.manaraa.com

4

highly parallel programs, high system efficiency may be easier to obtain with multiprogramming and

moderate ^plication parallelism.

No space sharing ^proach is obviously the best. In static space sharing, runtime application

reconfigurations are avoided and a broad range of compiler optimizations (including static data distri­

bution) can be applied. However, there is processor firagmentation. Folding may reduce the average

fragmentation and increase program efficiency, but it can increase cache misses and induce or increase

swiping. The dynamic approach can achieve superior system utilization (it is free fi-om processor

fragmentation when it is topology-independent), but it induces several sources of overhead associated

with application reconfigurations. Assuming a distributed-memory machine, for example, these include

context switches, cache reloads, and data migration. They may also include code migration, and swap­

ping as a result of folding.

The goal of this research was to study and compare the static and dynamic space sharing strategies

when allocation is topology-independent and the execution times of jobs are not known a priori. Several

algorithms that implement the two strategies are compared in this dissertation. The algorithms differ in

the job selection criteria and the folding method, and the objective is achieving short average turn­

around times and high system utilization.

The results show that static space sharing should support folding, and the maximum &ctor by

which applications are folded should be limited and increase with the system load. Adaptive limited

folding is substantially superior to no folding and unlimited folding. It can result in significantly lower

processor fragmentation and mean response times. Traditional no folding policies (e.g., first-fit and

first-come-first-served) suffer from high processor fi'agmentation. Unlimited folding variants of these

policies produced much worse fragmentation under most system loads, but they can yield significantly

shorter mean response times under high loads because of the significant efficiency improvement that

typically results fi'om folding.

As expected, dynamic space sharing is superior to static space sharing when the overhead of

www.manaraa.com

5

application reconfigurations is low. However, static space sharing can, depending on the frequency and

cost of ^plication reconfigurations, be the better strategy. Because of the efGciency advantage of

folding, dynamic schemes that reduce waiting times by folding a larger number of applications are

more promising than others that reduce execution times by allowing only a small number of jobs to

execute simultaneously.

1.2 Background

1.2.1 Classes of MBMD Machines

System architecture, especially the organization of the memory subsystem, has a strong influ­

ence on the design of scheduling algorithms for MIMD multiprocessors. Parallel architectures are

commonly classified according to this subsystem's organization. A uniform memory access (UMA)

multiprocessor has a common main memory whose cost of access is independent of the address of the

requesting processor. Encore's Multimax and Sequent's Symmetry are examples of UMA systems.

In non-uniform memory access (NUMA) shared-memory systems, main memory is shared but

hierarchical. Part of it is local (i.e., significantly less costly to access) to each processing element (PE),

where a PE may consist of a single processor or a small bus-based cluster of processors. Examples of

clustered NUMA systems are the Stanford Dash [Lenoski 92] and the Illinois Cedar [Eigenmann 91].

In distributed-memory multiprocessors, also called multicomputers, main memory is not

shared, and processes executing on different processors must exchange messages in order to communi­

cate and synchronize their activities. Examples of multicomputers are Intel's iPSC/860 and the

NCUBEs.

In UMAs, processes are typically dispatched independently of the location of their code and

data, and of where they executed previously. However, scheduling processes where they last executed

can reduce the cache reload overhead and improve program performance [Squillante 93]P'orrellas 93].

www.manaraa.com

6

In NUMAs, executing processes or threads "close", in the memory hierarchy, to the shared

objects they reference can significantly reduce the cost of memory operations and execution times

[Chandra 93][Matkatos 92a][Markatos 92b]. As the speed of processors has been increasing faster

than that of the memory subsystem, exploiting memory locality in recent bus-based systems, such as

the Silicon Gr^hics Iris, can reduce memory access contention and also yield significant performance

benefits [Markatos 92a][Markatos 92b].

In distributed-memory systems, applications are typically statically mapped and scheduled be­

cause the cost of data and code migration, and the overhead of managing the access to migrated data

(e.g., access forwarding) are high. The mapping is often topology-based (i.e., processes that interact

extensively are m^ped onto adjacent processing nodes) so as to reduce message delays and contention.

The fundamental problem with static topology-based allocation is that it can produce high processor

fragmentation [Li 91][Liu 94]. Thus, there is a tradeoff between system utilization and exploiting lo­

cality.

With recent interconnection routing techniques (e.g., wonnhole routing), message delays due to

the number of hops between the communicating nodes are significantly reduced, and non-contiguous

allocation schemes are receiving increasing interest [Naik 93b] [Liu 94]. Experiments on a 208-

processor Paragon, a distributed-memory machine that uses wormhole routing, indicate that the con­

tention overhead in non-contiguous allocation may not be so severe so as to offset the benefits of re­

duced fragmentation [Liu 94]. An earlier parallel programming environment for hypercubes, the Cos­

mic Environment [Seitz 90], also supported non-contiguous allocation. Applications could request an

arbitrary number of processing nodes.

1.2.2 Granularity of Process Interactions

The granularity of parallelism describes the amount of work a process accomplishes between

consecutive interactions; that is, between consecutive communication or synchronization events. It is

www.manaraa.com

7

fine if the amount of woric is "small", coarse if it is "large". The granularity is described more precisely

if the ratio R/C is used, wiiere R is the computation time between two consecutive interactions, and C

is the cost of the interaction [Stone 90], It is fine if R/C is small, coarse if it is large.

A major goal of computer architecture and parallel programming language development has

been the design of large parallel systems that can efficiently support fine-grained process interactions.

For example, this is a goal of the Stanford Dash shared-memory machine [Lenosid 92], the *T distrib-

uted-memory system fi'om Motorola and MIT [Beckerle 92], and wormhole routing [Seitz 90],

Fundamental properties of scheduling algorithms depend on parallelism granularity. A basic

issue is whether scheduling cooperating processes independently, as in traditional process-based

scheduling, is appropriate when parallelism is fine-grained. For example, the *T multithreaded distrib-

uted-memoiy system has machine instructions that support microthreading and split-phase transac­

tions. Programs use them to hide the latency of requests for remote objects. When a computation needs

remote data, one of its threads initiates the necessary network messages and terminates. The processor

is then switched to a ready microthread. A data request message contains the address of the computa­

tion's continuation thread and is addressed to a program thread in the remote process that holds the re­

quested item. The suspended thread becomes ready and joins the ready microthreads when the remote

data is received [Beckerle 92].

Processes that make fi-equent use of split-phase transactions to synchronize their activities or

communicate should be active simultaneously to achieve desired performance. Static space sharing that

assigns cooperating processes to different processors, and (round-robin) coscheduling [Ousterhout 82]

are ^propriate candidates for this system. In coscheduling, cooperating processes are assigned to dif­

ferent processors, and they are dispatched together in a round-robin fashion. An advantage of static

space sharing is that it avoids the context switches associated with time-multiplexing. Although dy­

namic space sharing algorithms can achieve the optimal scheduling effectiveness (i.e., iS'e=l), it may not

be a better solution because the cost of migration and access forwarding may be excessive.

www.manaraa.com

8

Traditional process-based scheduling can lead to high synchroni2ation delays and poor pro­

gram turnaround times in UMA (Tucker 89] and NUMA systems [Eigeimiaiui 91], Tucker and Gupta

[Tucker 89] determined experimentally on a 16-processor Encore Multimax, a UMA shared-memory

machine, that performance can degrade when the number of processes exceeds the number of proces­

sors and regular preemptive priority-based scheduling is used in conjunction with busy-waiting syn­

chronization. The severity of the degradation increased with the number of processes. In their experi­

ments, several programs were used, the sizes of the programs were fixed, but the number of processes

they spawned varied. Context switches are a major cause of performance degradation. For example, a

process may be preempted in a critical section, blocking the entry of other processes to the section until

the process is resumed. The higher the load, the longer a preempted process spends in the waiting queue

and the more likely it is that cooperating processes are prevented fi-om entering the critical section. In

their solution, process control, the number of processes is controlled so that it does not exceed the

number of processors, and the processes are assigned to different processors. In this way, preemptions

are avoided. In addition to avoiding the preemptions associated with time-multiplexing, process control

takes advantage of the increase in efficiency that typically results fi'om folding.

When processes interact frequently, poor performance can result even if the kernel, upon re­

quest from the user, does not block a process in its critical section. When a process is preempted at the

end of its time-slice, cooperating processes cannot, once they reach the next interaction point, make

progress until the preempted process is resumed. If they block, they may cause yet other processes to

block, etc.. This can lead to an excessive number of context switches.

However, multiprogramming at the processor level has been widely used in distributed-memory

systems designed for coarse-grained parallelism. It provides a mechanism for hiding the high message

latency in these systems. For example, the Cosmic Kernel node operating system supported a blocking

receive system call. A process that issued this call was suspended if there were no messages for it, and

a process that had one was dispatched. Time-slicing was used to enforce fairness by preventing proc­

www.manaraa.com

9

esses from nmning uninterrupted for too long [Seitz 90],

This approach is ine£Scient when parallelism is fine-grained. A context switch entails a process

state save and restore, and a system call typically entails a trap, saving the contents of machine regis­

ters, and restoring them upon exit from the call. Moreover, system calls are normally general in that

they provide the sum of services required by users and typically include code that protects the kernel

from user errors [Anderson 92]. For these reasons, two-level schedulers are a promising scheduling

approach, and distributed-memory systems designed for finer-grained parallelism (e.g., •!) support

microthreading and user access to the network inter&ce. In two-level schedulers, user-level library

routines are responsible for thread scheduling so as to reduce its cost. The high-level scheduler is part

of the kernel, and is responsible for job selection and processor allocation.

1.2.3 Programnning Languages and Models

Scheduling algorithms and programming models are not independent. For example, several

parallel programming systems (languages and libraries) include statements for explicitly mapping

processes onto specific processors. With these statements, a space sharing allocation algorithm may not

run explicitly-mapped processes untU the requested processors are free. This can increase or induce

processor fragmentation. For example, topology-independent dynamic space sharing is not free from

processor fragmentation in this case.

When the number of processors allocated to an application is less than its process parallelism,

two scheduling techniques may be used. In the first, the number of processes is decreased so that it is

equal to the new partition size and a processor is assigned a single process. A threads package that uses

the shared task queue parallel execution model has been used for implementing this approach in shared-

memory systems [Tucker 89][McCann 93], Tasks are added to the queue when they are created and

fetched for execution when processors need work. Parallelism is controlled when the task queue is ac­

cessed. The task queue model suffers from several sources of overhead, including the critical sections

www.manaraa.com

10

that control access to the queue(s), and the extra instructions needed to read task descriptors.

In small systems, a single queue may be appropriate. However, multiple queues are needed in

large systems to reduce access contention, especially when the tasks are fine-grained. Significant per­

formance improvement can result if tasks execute close to the data objects they reference. These in­

clude cached objects, and objects residing in local memory in NUMA machines. To improve cache hit

rates, the de&ult thread scheduling policy in FastThreads uses a local threads list that is serviced in

last-in-first-out order. A processor scans other lists when its list is empty [Anderson 92]. An issue is

how to partition the work for load balancing and data locality. The tradeoff between these two &ctors

is investigated in [Squillante 91][Maiicatos 92a][Markatos 92b][Markatos 93].

In the second scheduling technique, the number of processes is not changed, but their execution

is interleaved. The sources of overhead include load imbalance, which can be much higher than when

parallelism is controlled and the task queue model is use4 and the process context switches associated

with time-multiplexing.

In static space sharing policies that support folding, processor allocation is determined at load

time. The compiler must generate object code that can be bound to any number of processors. MITs Id

compiler for the Monsoon, for example, generates code that can run on any number of processors

[Hicks 93],

1.2.4 Relationship between Allocation and Efficiency

Speedup and efficiency are commonly used to measure the performance of a parallel applica­

tion when it executes on a dedicated set of processors. When the application is allocated m processors,

its efficiency, and speedup, Speedup{m), are defined as;

and

www.manaraa.com

11

Speedup(m) = -^lp-
t(m)

where t{j) is the execution time of the application on J processors. Speedup is linear if t{\)lt(rn)=m, su-

perlinear if t{\)lt(m)>m, and sublinear otherwise.

The efficiency of a parallel program typically increases when the number of processors it is

(exclusively) allocated decreases. The allocation decrease reduces the effect of the serial fraction

(Amdahl's law) and other load imbalances due to lack of parallelism, and it typically reduces communi­

cation and synchronization. Allocating more processors to a program can improve cache locality and

reduce or avoid swapping. However, it is assumed that efficiency does not increase with m in this re­

search because applications seldom have superlinear speedup.

An important issue is determining the number of processors an application should use, n. As m

increases, the efficiency and the incremental reduction in execution time typically decrease. Often, the

speedup curve is convex in m; that is, the speedup decreases if m increases beyond some value, M.

Many applications and algorithms have this type of speedup curves. Examples abound in the literature.

Obviously, n should not exceed Af as additional processors increase the execution time.

Gustafson suggests that the size of the problem be increased with the number of processors

[Gustafson 88]. Given m processors, increasing the size of the problem can increase ^m). However,

this method is not always useful as ^plications can have fixed sizes. Assuming that the execution

times of the {^plication as a function of m are known, several methods for determining the value of n

have been proposed [Flatt 89][Ghosal 91][Gupta 93]. For example, Ghosal, et al, [Ghosal 91] propose

that n be the smallest value of m that maximizes the cost function Speedup(m)*^m) (choosing n that

optimizes this function had been proposed by Kuck in 1976 [Flatt 89]). The value of t{ri) determined by

these methods can typically be significantly reduced by allocating more processors. When the system

load is moderate, a hi^er limit on the value of n can improve turnaround times. Methods based on the

minimum, average, maximum, and variance of parallelism have also been proposed [Sevcik 89], These

methods are discussed in more detail later.

www.manaraa.com

12

1.3 Space Sharing Scheduling Policies

Because of the presence of multiple processors in a parallel computer, space sharing and time

sharing can be used. In space sharing, a job is allocated a distinct subset of processors; that is, no

processor is concurrently assigned to more than one job. Space sharing may be static or dynamic, h

static space sharing, the subset (partition) is fixed for the lifetime of the job. However, it can change in

size and in the processors it contains in dynamic space sharing.

Process scheduling within program partitions is not modeled in this research. Several tech­

niques, discussed earlier, may be used. In process control, for example, the number of processes is

controlled so that is equal to the partition size, a processor is dedicated to each process, and load bal­

ancing and thread scheduling are carried out by the programming language runtime system in coordi­

nation with the operating system kernel. Traditional process-based scheduling may also be employed.

The operating system kernel interleaves the execution of processes when their number exceeds the

number of processors they are allocated.

1.3.1 Static Space Sharing

Two basic techniques have been used for implementing static space sharing in parallel systems.

Under the machine partitioning technique, the system is subdivided into disjoint partitions independ­

ently of individual applications, and an qjplication is commonly allocated a single distinct partition

(when it is not stated otherwise, this one-to-one mapping is assumed). The partitioning may be fixed or

adaptive. In fixed partitioning, the number and sizes of the partitions are constant, whereas they can

vary in adaptive partitioning. An issue with preventing applications fi-om running on more than one

partition is that it can lead to poor system utilization under moderate loads, when idle partitions are

unlikely to be allocated soon.

In the program-based partitioning technique, partitions are created for individual applications.

When an application is selected for service, the allocation algorithm determines which free processors

www.manaraa.com

13

to assign to it. The main advantage of this technique is that it can achieve superior system utilization.

1.3.1.1 Fixed Partitioiiing

A subclass of fixed partitioning poUcies, based on equipartitioning, was the subject of several

recent studies [Ghosal 91][Naik 93b][Setia 93]. The machine is subdivided into partitions of equal size,

an ^plication is allocated a single partition, and several partition sizes were considered in these stud­

ies. Using the throughput to mean response time ratio as performance parameter, the results in [Ghosal

91] show that; (1) the performance of fixed equipartitioning depends on the size of the partitions, the

processor demands of the applications, and the system load, (2) the best partition size generally de­

creases with the load, and (3) a policy based on the first-fit allocation discipline, FF+FIFO, is superior

(under most load levels) to fixed equipartitioning, including when the best partition size (i.e., that which

produced the best performance) considered in the study is used. In [Naik 93b][Setia 93], the mean re­

sponse times decreased when the number of partitions increased with the system load.

No algorithm that determines the best number of partitions is given or used in the three studies,

and the influence of job sizes on the performance of fixed equipartitioning was not adequately investi­

gated. For example, the applications can use all processors in [Setia 93], and a small set of applications

(five ^plications) was used in [Ghosal 91], Another issue is how to dynamically change the number of

partitions in this static allocation approach, while maintaining equipartitioning.

There are three general issues with equipartitioning. First, it suffers fi-om internal fi'agmenta-

tion, which results when the maximum process parallelism of an active job is smaller than the size of

the partitions. Second, only a subset of partition sizes can be used because the number of partitions

must divide P. The third issue is that other partitioning strategies may be better when the distribution of

the processor requests of applications is general.

www.manaraa.com

14

1.3.1.2 Adaptive Partitioning

The partitions vary in their sizes and number during machine operation in this processor allo­

cation strategy. The current workload characteristics and system load, for example, may be used in

determining these parameters. That the performance of the fixed equipartitioning policy improves when

the number of partitions increases with the load, as shown in [Ghosal 91][Naik 93b][Setia 93], implies

that an adaptive equipartitioning policy in which the number of partitions is appropriately determined

by the system load should be superior to fixed equipartitioning.

1.3.1.3 Program-based Partitioning

Several program-based partitioning policies that differ in the folding method have been studied.

The FF+FIFO allocation policy, proposed by Ghosal, et al, [Ghosal 91] for shared-memory machines,

uses a FIFO waiting queue and has two phases. In the first phase, the first-fit (FF) algorithm is run and

the selected applications are allocated as many processors as they request. If there remains £*66 proces­

sors, they are allocated to the head of the queue in the second phase. This policy outperformed several

schemes, including FF and equipartitioning that uses the best number of partitions, under most system

loads.

Folding is imlimited in FF+FIFO. An application may run on any nimiber of processors that

does not exceed its processor request. There are two problems with unlimited folding in static space

sharing. First, when an appUcation is allocated a very small number of processors, its execution time

typically increases considerably. The application may complete much sooner if it waits for more proc­

essors to become available. Second, released processors are likely to remain idle for a long time, espe­

cially under moderate system loads, for two reasons: (1) the average length of the waiting queue is

smaller than when folding is constrained or not supported, and (2) processors are not allocated to

folded jobs in static space sharing. A job may be executing on fewer processors than it requested while

processors are idle, The problems with unlimited folding are discussed in detail in the next Chapter.

www.manaraa.com

15

Abraham and Padmanabhan [Abraham 92] studied a program-based partitioning policy that

limits folding. An ^plication is not serviced until it can receive at processors, where n is

the ^plication's processor request and fmax ^ constant. When a program is serviced, it receives mini-

mvsa(FP,n) processors, where FP is the number of free processors. An issue is determining the value of

/max- Using simulation, they determined that it should be 3 or 4. With these values, the limited folding

policy outperformed first-fit and first-come-first-served (FCFS) significantly. One limitation of this

study is that these values were determined through experimentation under limited load and work­

load characteristics, and they may not be appropriate across a wider range of system loads and work­

load characteristics.

Naik, et al., [Naik 93b] studied another policy that supports limited folding and compared it to

fixed equipartitioning. In this policy, a request is not serviced until it can receive at least some fixed

number, mitt, of processors. When a job completes, the fi-ee processors are divided evenly among the

waiting programs under the above constraint. The policy produced better average turnaround times

than fixed equipartitioning, including when the best number of partitions considered in the study is

used. An issue is determining the value of min. For example, folding can be excessive if min is small,

and many jobs are not folded if it is high. A second issue is whether the equal division of fi-ee proces­

sors among waiting jobs is a good policy. In their simulation experiments, the target machine is a 256-

processor distributed-memory multiprocessor, and min is 32. The choice of this value is not explained.

It presumably produced the best performance.

1.3.2 Multiprogrammed Static Partitioning

In this approach, allocation is static and the partitions are multiprogrammed. More than one

job may be simultaneously assigned to the same partition. Multiprogramming at the processor level is

commonly used to overlap communication and computation in distributed-memory systems that have

high message latencies.

www.manaraa.com

16

In a study by Setia, et al, [Setia 93], the partitions are equal in size, and a job is assigned to a

single partition. In the program model used, parallelism is coarse-grained, the program consists of one

or more phases, and the processes synchronize at the end of each phase. Using simulation, and assum­

ing that the processor requests of the jobs are equal to the machine size, they compared multipro-

grammed and uniprogrammed equipartitioning using several partition sizes. Their results show that

multiprogrammed equipartitioning can outperform uniprogrammed equipartitioning under all load lev­

els when the load imbalance within programs (the variance of the execution times of processes) is high.

However, when the imbalance is small, uniprogramming can be better under low to moderate system

loads (< 0.6 in their study). Their results also show that the best number of partitions increases with the

load in uniprogrammed and multiprogrammed equipartitioning.

There are several issues with this study. First, the variance of the execution times of processes

is assiuned to increase linearly when a job is folded. In practice, it may decrease or its increase may be

sublinear. Second, the performance of multiprogramming is highly sensitive to the granularity of com­

putation and the value of the time-slice. Third, it is not clear how equipartitioning, uniprogrammed or

multiprogrammed, will perform when the processor requests of applications have a general distribution.

Multiprogrammed fixed equipartitioning was proposed by Ahmad, et al, [Ahmad 94] for

scheduling ^plications with dynamic structures on hypercube multicomputers. The hypercube is di­

vided into spheres (partitions with a locality property and a median processor) of equal size. A host

computer assigns an application, for its lifetime, to the sphere with the smallest number of main tasks.

When a subtask is created, the median assigns it to the least loaded processor in its sphere. The proces­

sor load is the number of subtasks it is assigned. When compared with a neighborhood averaging dis­

tributed scheduling algorithm, this hierarchical two-level allocation scheme produced better mean re­

sponse times. In the simulation experiments, a 2S6-node machine was subdivided into a fixed number

(16) of spheres. A problem with this strategy is that it can lead to poor system utilization because ap­

plications can not use more than one sphere. Spheres are likely to idle for a long time under moderate

www.manaraa.com

17

loads.

In the pool-based scheduling technique, proposed and studied by Zhou and Brecht [Zhou 91]

for clustered NUMA systems, the machine is subdivided into partitions of equal size, the partitions are

multiprogrammed, and a job may span several partitions. A job that runs on a given number of proces­

sors is assumed to sufifer more overhead when it spans more partitions. Their simulation results show

that this technique can result in significant reductions in mean response times, and spanning should be

restricted or disallowed. However, limited spanning produced better results than no spanning. Although

the best number of partitions decreased when the average job parallelism increased, two partitions pro­

duced good performance.

Using queuing theory to study job scheduling in distributed-memory machines, Setia, et al,

[Setia 94] show that applications should run on fewer processors when the load increases. In the

woridoad model used, the ^plications have the same maximum process parallelism, N, and a job's

processes synchronize once prior to terminating. The allocation policy considered is parameterized in

an integer Z that divides N. A new job is split into Z components of size NIZ that are assigned to the Z

processors that have the shortest local scheduler queues. The processing nodes scheduler supports

multiprogramming and services the processes in its local queue using the FCFS discipline. The mean

response times obtained with several parameter values show that Z should decrease with the load, and

the rate of decrease should increase with parallelism overhead (e.g., communication and synchroniza­

tion overiiead).

1.3.3 Dynamic Space Sharing

The subset allocated to an application can change in size and in the processors it contains

while the application is running. The main advantage of this strategy over static space sharing is that it

can reduce processor Segmentation. A job that is allocated less than the number of processors it had

requested can use processors released later, and processors need not remain idle if there is an allocation

www.manaraa.com

18

request. This is important under moderate loads, when released processors are otherwise likely to re­

main idle for a relatively long time. The number of processors allocated to a job can also vary accord­

ing to its parallelism. This can reduce load imbalances within applications, and it may, depending on

the overhead of processor releases and reallocations, improve job performance and system efficiency.

The overiiead depends on the cost of the release/reallocation operations and on their frequency. If proc­

ess-level parallelism is fine-grained and variable, the number of these operations can be excessive.

1.3.3.1 Process Control

The goal of this technique, proposed by Tucker and Gupta {Tucker 89] for shared-memory

multiprocessors, is to reduce the number of context switches induced by traditional process-based time

sharing. The number of processes is dynamically controlled so that it does not exceed the number of

processors, a processor is dedicated to a single process, and time-multiplexing is avoided.

In the prototype implemented on a Multimax, the processors used by controllable jobs (i.e.,

jobs whose process parallelism can be varied) are divided evenly among them, however a job is not

allocated more than the number of processors it requested. Controllable qiplications use a threads

package that supports the shared task queue model and process control. In comparison to traditional

priority-based scheduling, this policy reduces the number of context switches as processes are sus­

pended only when their job's allocation is decreased. Significant reductions in turnaround times were

obtained. For some applications, the improvement was by more than a &ctor of two. An issue vnth this

equipartitioning implementation scheme is that smaller jobs receive a larger Suction of their processor

request. Larger jobs are discriminated against and the efficiency advantage of folding is not exploited

uniformly across job sizes.

McCann, et ai, [McCann 93] implemented and compared three scheduling policies on a Se­

quent Symmetry multiprocessor, a UMA shared-memory machine. They are called: round-robin job

(RRjob), Equipartition, and Dynamic. In RRjob, originally proposed by Leutenegger and Vernon

www.manaraa.com

19

[Leutenegger 90], a job is assigned n processors for a time interval t=kln when its turn arrives, where n

is the maximum number of processors the job can use at any time during its execution (i.e., its maxi­

mum process parallelism) and jt is a constant. The unassigned processors are given to the job whose

turn is next. In the woridoad used, the values of n exceed PH, where P is the number of processors in

the machine. In Equipartition, the machine is subdivided evenly among the competing jobs and alloca­

tion is independent of instantaneous job parallelism. In Dynamic, the allocation depends on actual con­

currency. Jobs request processors as they need them, and mark those they caimot currently use as

"willing to yield". Free and willing to yield processors are allocated first, then equipartition is enforced

by preemptmg processors from the job(s) with the largest allocation. Jobs schedule their threads using

a low-level scheduler that manages a shared task queue and has support for process control.

RRjob resulted in the longest response times as it does not take advantage of the efBciency ad­

vantage of folding, and because progress is impeded when only a subset of a job's processes are active.

Dynamic yielded better average turnaround times than Equipartition. The improvement was small

(about 10%), but significant. The decrease in job idle times it produced was larger than the additional

overhead it incurred because of its larger number of processor releases and reallocations.

1.3.3.2 Preemptive Policies

A problem with static space sharing is that waiting times can be excessive when long jobs are

running. Assuming that the execution times can be estimated a priori Naik, et al, [Naik 93b] used

simulation to study a preemptive space sharing policy that gives priority to short jobs. The target sys­

tem is a distributed-memory multiprocessor, and jobs are classified a priori as short, medium, or long.

When a job arrives, processors can be preempted fi-om medium and long jobs, but not firom short jobs.

It is assumed that medium and long applications can be dynamically reconfigured. When processors are

released, they are subdivided evenly among waiting applications under the constraint that they do not

receive more than their processor request or less than some fixed number of processors.

www.manaraa.com

20

When compared to their nonpreemptive limited folding static scheme, discussed earlier (see

Section 1.3.1.3), this policy produced better average response times for short jobs, but the performance

of medium and long jobs suffered under medium to high loads. In their experiments, the execution

times of medium and long jobs are considerably longer than those of small jobs. Issues with this

scheme are implementing ^plication reconfigurability, the cost associated with preemptions and re­

configurations, and the assumption that jobs can be classified in advance according to their execution

times.

1.4 Other Related Scheduling Disciplines

1.4.1 Scheduling in the Xylem Operating System

This operating system runs on the Illinois Cedar computer, a clustered NUMA machine. A

parallel program runs as a Xylem process, which contains one or more tasks assigned to Cedar clusters

for their lifetimes. The tasks are scheduled independently. The Cedar Fortran runtime library has three

variations, which are called Queued, Simple, and Static. The Queued and Simple variations support the

shared queue subtask scheduling model. In the Queued version, a wait-then-block technique, proposed

by Ousterhout [Ousterhout 82], is used to reduce the number of context switches. A task holds onto its

processor for some time interval when it has to wait for an event. The hope is that the event will happen

before the interval expires, and thus avoid the context switch. The task is blocked if the event does not

occur within the interval [Eigenmann 91].

There are two problems with the wait-then-block technique. The first problem is that the best

interval length is difficult to determine because it is ^plication-dependent. Having the programmer

specify this length is not a good solution because users should not be trusted in setting it. The second

problem is the time that a task, once blocked, spends in the suspended state. Other tasks that interact

with it may also be preempted, especially under heavy load when a blocked task is likely to spend a

www.manaraa.com

21

long time in the suspended state. An excessive number of context switches can result, depending also

on the granularity of process interactions. Notwithstanding the wait-then-block technique, Eigenmann,

et al, note that "Synchronization delays can be quite high because the task scheduler on each cluster

and the microtask schedulers in each process work independently." [Eigenmann 91, page S]. Space

sharing that guarantees the simultaneous execution of cooperating tasks is a potential solution to this

problem.

The Simple library version uses busy-waiting synchronization. Tasks do not surrender their

processors when they must wait. Reductions in mean response times for individual applications were

obtained under light conditions. A problem with busy-waiting is that it can lead to excessive spinning

times for synchronization events. In the Static Ubrary version, loops are statically mapped and dis­

patched. For example, the iteration space of a parallel loop can be distributed among the tasks. The

critical section that controls access to the shared subtask queue is avoided, but the load imbalances can

be high.

1.4.2 Round-Robin Coscheduling

In this strategy, proposed by Ousterhout [Ousterhout 82] for multiprocessor systems that

permit extensive (fine-grained) process interactions, an sqjplication's runnable processes are dispatched

and preempted together. Coscheduling solves the problem of excessive synchronization and communi­

cation delays that can result when a proper subset of cooperating processes is not running. However, it

suffers from several sources of inefiBciency, including the corruption of cached code and data by inter­

leaved applications, the potential need to swap groups of processes at the same time, and the overhead

of context switches. Moreover, coscheduling, as specified by Ousterhout, does not take advantage of

the increase in efficiency that typically results when an application executes on fewer processors. A job

is assigned to as many processors as it requests. However, folding can be used with coscheduling.

www.manaraa.com

22

1.4.3 Abstract Process-Based Scheduling Policies

Assuming that parallel jobs consist of independent processes, Majumdar, et al., [Majumdar

88] studied several abstract process-based scheduling policies for shared-memory multiprocessors, in­

cluding FCFS, round-robin process (RRprocess), preemptive smallest cumulative demand first

(PSCDF), smallest number of processes first (SNPF), and preemptive SNPF (PSNPF). In PSCDF , for

example, processes that belong to the job with the shortest remaining total demand are given preemp­

tive priority. Processes belonging to the job with the snudlest number of processes that have not yet

completed are given preemptive priority in PSNPF. PSCDF produced the best average response times,

however it requires that the remaining execution times be known.

Leutenegger and Vernon [Leutenegger 90] also evaluated these policies using simulation and

assuming a shared-memory multiprocessor. They concluded that their general performance ordering,

from best to worst, is: PSCDF, RRprocess, PSNPF, SNPF, FCFS. However, RRprocess can perform

worse than SNPF when the total service demand of jobs is linearly dependent on the number of proc­

esses. In this case, a job with a small number of processes is likely to have a small total processing de­

mand. A fundamental problem with these policies, with the possible exception of RRprocess, is the as­

sumption that processes are independent. Moreover, experimental evidence shows that round-robin

process-based policies can perform poorly in shared-memory multiprocessors when the number of

processes exceeds the number of processors [Tucker 89][Markatos 93].

Leutenegger and Vernon [Leutenegger 90] also studied two non process-based policies that

attempt to allocate an equal fiaction of the processing power to each job; round-robin job (RRjob), and

process control, proposed by Tucker and Gupta [Tucker 89]. These policies produced comparable

mean response times. However, equipartition outperformed RRjob significantly in experiments by

McCann, et al, [McCann 93].

www.manaraa.com

23

1.4.4 Job Scheduling with Detailed Characterization of Parallel Execution

The execution of a parallel program on dedicated processors is commonly characterized by its

execution curve, which gives the execution times as a function of the number of processors used. Intui­

tively, superior space sharing policies can be designed if the execution curves are known in advance.

Assuming that the influence of multiprogramming on the performance of applications is negligible, the

on-line job scheduling problem can be considered as an instance of the on-line two-dimensional bin-

packing problem when jobs are allocated contiguous linear subarrays of processors [Coffinan 91]. One

of the dimensions is space (i.e., the processors), and the second is time. When folding is supported, the

rectangles to pack are malleable and superior packing is possible. The allocation algorithm can, for

example, ensure that folding does not delay job completion because it can determine when the busy

processors will be released. Alternatively, the algorithm may allocate more processors to short or efiB-

cient programs.

Zahoijan and McCann [Zahoijan 90] compared static space sharing, dynamic space sharing,

and round-robin coscheduling using three algorithms, each representing one of these scheduling classes.

The static space sharing algorithm bases allocation on the execution curves. The execution time of a

waiting job is defined to be very large, and the job whose execution time will decrease the most follow­

ing the aUocation of an additional processor is given priority. Thus, an application is allocated one

processor before any receives additional processors. There are several problems with this scheme.

First, it supports eager unlimited folding, which, as it will be shown in Ch^ter 2, can result in exces­

sive folding and poor mean response times. For example, when a job that is allocated two processors

terminates, two waiting jobs may be serviced. The jobs may complete much sooner if they wait for

more processors to become available. The second problem is that the algorithm will typically give pri­

ority to long jobs as their execution is likely to decrease the most when they are allocated additional

processors. The coscheduling algorithm supports folding and process migration in order to exploit the

efiBciency advantage of folding and reduce processor fragmentation. In the dynamic policy, applications

www.manaraa.com

24

request processors as they need them, but allocation does not depend on the execution curves. If there

are no free processors when a new job arrives it is allocated a processor taken away from a job that is

allocated multiple processors. If any part of a job's request is not satisfied it waits. When processors

are released, waiting applications that are allocated no processors are given priority for the allocation

of their first processor. Each is allocated one processor, if possible. The remaining processors are then

allocated to requests for additional allocation on FCFS basis. A problem with this scheme is that some

active jobs may be allocated a large number of processors while others that arrived later are allocated a

few processors.

The three policies were compared using simulation. The workload consists of several program

structures that exhibit variable parallelism, and the target multiprocessor is UMA. The results show

that the dynamic algorithm can outperform the static algorithm depending on the overhead of processor

releases and reallocations. The round-robin coscheduling scheme produced the worst mean response

times [Zahoijan 90].

K. Sevcik [Sevcik 89] studied the influence of using several characteristics of program paral­

lelism on the performance of static space sharing. The characteristics for application j are the average

parallelism Aj, variance of parallelism, Vj, minimum parallelism, mj, and maximum parallelism, Mj.

He proposed that job j be allocated Aj processors across all system loads if Vj~0, otherwise it should be

allocated fewer processors when the load is higher. The rate of allocation decrease should increase with

Vj. When Vj is high, the job should be allocated processors imder very light load and mj processors

under very high load. The simulation results show that folding can produce significantly shorter mean

response times when the variability of parallelism is greater than zero.

1.4.5 Hierarchical Process Allocation Algorithms

As the size of the target system increases, a centralized scheduling algorithm may become a

botdeneck. To address this problem, Feitelson and Rudolph [Feitelson 90] proposed that the scheduling

www.manaraa.com

25

fiinctioa be carried out by dedicated hierarchical control processors. In their simulation study of hierar­

chical coscheduling, a binary tree of controllers is used. Processors at levelin cooperation with their

subordinates, are responsible for scheduling tasks that require a number of processors in the interval

[2'"1+1,2']. The tree leaves are at level 1. A parallel machine of size P requires P-l control processors.

An issue is whether such high cost is justifiable even if the control processors are, as proposed, less

expensive than the processing nodes. Moreover, the bottleneck problem persists if many applications

have large processor requirements as the processors in the higher levels of the tree, which handle large

jobs, are smaller in number.

In the multiprogrammed fixed equipartitioning policy proposed by Ahmad, et al, [Ahmad 94]

and discussed earlier, a two-level scheduling hierarchy is used. The target (a hypercube multicomputer)

is partitioned into a fixed number of spheres, the host assigns a main task to a single sphere, and the

sphere's median assigns its subtasks to processors within the sphere.

1.4.6 OfT-Line Scheduling

In off-line scheduling, the list of applications to be scheduled is fixed (i.e., the job arrival proc­

ess is not dynamic). The policies discussed above are on-line. The problem of allocating processors to a

list of ^plications can be viewed as an instance of the widely-studied off-line two dimensional bin

packing problem [Baker 80][Cof&nan 80][Cof&nan 91] when the execution times on the number of

processors requested are known, the jobs are allocated contiguous linear processor subarrays, and the

goal is minimizing the overall completion time.

Assuming the execution curves are known, Krishnamurti and Ma [Krishnamurti 92] proposed

an off-line heuristic for scheduling application lists on partitionable multiprocessors. The sizes of the

partitions are a subset of {1,..,P}. In the heuristic, each application is allocated the smallest partition

size initially. This step is followed by an iterative procedure that allocates the smallest number of addi­

tional processors to the £^plication that would complete last if it executed on the number of processors

www.manaraa.com

26

it is currently allocated. The goal is to produce a short overall completion time.

Off-line scheduling is not considered in this research. However, the same heuristic is often used

in oflF-line and on-line scheduling (e.g. first-fit). A heuristic may perform well in both cases for the

same reason.

1.5 System and Workload Models

The target multiprocessor for this woric consists of P identical processing elements, an appli­

cation is allocated its own subset of processors, and allocation is topology-independent. The algorithms

studied in this dissertation can also be used when parallel programs are organized as tasks that can be

scheduled independently, where a task is a collection of cooperating processes. In this case, processors

are allocated to tasks instead of applications.

It is assumed that a new application requests a number, n, of processors, and that n does not

exceed P. Unless it is specified otherwise, other job characteristics are not assumed to be known and

the sole job characteristic used in making allocation decisions is n.

The algorithms are evaluated using simulation. The simulator was developed in the C pro-

granuning language, and is event-driven. Jobs arrive from a Poisson source. The system load parame­

ter, L, is computed using the equation L=(A*N*Te)IP, where N is the mean processor request, Tg the

mean execution time, and X the arrival rate of jobs.

To study the effects of the efiSciency advantage of folding on the performance of the scheduling

policies, it is assumed that a job consists of a serial and a parallelizeable components in some of the

experiments. The corresponding speedup is sublinear and monotonically increasing in the number of

processors allocated, and is denoted by the acronym MISP in this dissertation. The values of ^n) are

generated using a pseudo-random variable distributed uniformly over a subset of the interval [0,1] in

these experiments. However, the efficiency values that correspond to a serial fraction exceeding 0.5 are

discarded. As ^m) increases when m decreases, L can exceed one without saturating the system when

www.manaraa.com

27

the allocation policy supports folding.

The processor request n, execution time Hfi), and efiSciency ^n) generated by the simulator for

a new job are used in computing the job's execution time when it is allocated fewer than n processors.

The job's serial fraction,^, is computed by the equation;

i - m

and the execution time on m processors, t{m), is computed by:

Linear speedup is assumed in other simulation experiments. The execution time t{m) is com­

puted then by the equation t{m)=n*t(ri)lm.

The distributions of the execution times and the values of n are not well-known. However, they

are often assumed to be exponential or uniform. The results of a Cray X-MP (a pipelined vector proc­

essor) workload characterization study over a two-month period show that about 28% of the private

jobs were short, 44% were medium, and 29% were long. The number of jobs submitted over the period

exceeded 60000 [Pasquale 91]. These results suggest that the exponential distribution, although com­

monly used, may not be appropriate for modeling the execution times of scientific applications.

The distribution of n depends on machine size, machine architecture, and program characteris­

tics. Determining the number of processors an application should use is an active area of research, but

is still mainly performed by ^plication developers. As in other studies, the uniform and exponential

distributions are used to model the values of n and t(n).

The allocation algorithms are evaluated and compared using mean response times and schedul­

ing effectiveness, and &imess curves. The fairness curves display the average turnaround times as

fimctions of n under load levels of interest, and the scheduling effectiveness measures the ability of the

algorithms to utilize the processors (avoid fi-agmentation).

www.manaraa.com

28

1.6 Problem Summary

The folding method, the job selection criteria, the system load, and woHdoad characteristics are

fundamental &ctors that influence system performance under space sharing job scheduling policies.

The goals of this research were to:

1) Investigate adaptive limited folding static space sharing.

2) Compare no folding, unlimited folding, and limited folding static space sharing.

3) Compare dynamic schemes that reduce job waiting times by executing many jobs simulta­

neously (including the promising previously proposed dynamic equipartitioning policy),

dynamic schemes that limit the number of active jobs, and promising static schemes.

4) Study the effect of giving priority to shorter jobs and jobs with smaller processor requests

on the performance of static and dynamic space sharing.

No folding and unlimited folding are compared in the next chapter. Adaptive static space

sharing that supports limited folding is studied in Chapter 3. Dynamic space sharing policies are the

subject of Ch^ter 4. Finally, Chapter 5 contains a sununary of the conclusions and recommendations

for future work.

www.manaraa.com

29

2 TRADITIONAL AND UNLIMITED FOLDING STATIC SPACE

SHARING POLICIES

In this ch^ter, several no folding and unlimited folding static space sharing policies that sup­

port topology-independent program-based allocation are studied and compared. The results of a de­

tailed simulation study of their performance show that unlimited folding is superior to no folding under

high system loads when the efBciency of ^plications increases significantly with a decrease in the

number of processors allocated. However, when the qiplications are highly efScient, no folding is su­

perior under most or all loads, depending on workload characteristics. The results also show that the

job selection criteria has a significant effect on performance within both policy classes. Several algo­

rithms based on the assumption that the execution times of applications on the nimiber of processors

they request can be estimated in advance are also studied. The results show that giving priority to

shorter jobs can improve mean response times significantly.

2.1 Introduction

The two basic methods for implementing static space sharing in parallel systems are machine

partitioning and program-based partitioning. In the machine partitioning method, the target system is

subdivided into disjoint partitions independently of individual applications, and an application is com­

monly allocated a single distinct partition. In program-based partitioning, distinct partitions are created

for applications as they are serviced.

Topology-independent program-based space sharing has two major advantages over machine

partitioning that assigns an ^plication to a single partition (the common mapping approach). First, it

avoids internal processor fi-agmentation. Second, a job can be allocated any number of processors.

www.manaraa.com

30

Significant performance improvement can result under moderate loads, when free machine partitions

are not likely to be allocated soon.

Two classes of program-based space sharing policies are considered in this ch^ter. In the

(traditional) no folding class of policies, a parallel program is always allocated the nimiber of proces­

sors it requests. This niunber can be determined at compile-time, and several data access optimizations

can be supported. For example, in the Rice University FORTRAN D compiler for distributed-memory

machines, programs are compiled for a specific number of processors, and fimdamental data distribu­

tion constructs and communication overhead reduction techniques that depend on this number are sup­

ported [Himandani 92].

In the unlimited folding class of policies, a job can be allocated any number of processors that

does not exceed its processor request. The optimizations that are possible when the number of proces­

sors on which the program will run is fixed prior to execution (e.g., static data distribution) can still be

supported. The compiler must generate object code that can be bound to the allocated processors. Such

model is supported by MITs Id compiler for their Monsoon dataflow system. The object code it gen­

erates can run on any number of processors [Hicks 93].

With unlimited folding, a processor does not remain idle if there is a pending allocation re­

quest, and the increase in efiBciency that typically results when a job executes on fewer processors is

exploited. However, a job may be allocated a very small fi°action of the number of processors it re­

quested, causing it to complete much later than if it waits until that many processors are available. Be­

cause a folded q)plication can not be allocated additional processors (processor allocation is fixed in

static space sharing), folding fragmentation results. This type of firagmentation exists when processors

are fi'ee and there is one or more folded applications. As released processors are likely to remain unal­

located for a long time under moderate loads, high folding fi'agmentation and poor system utilization

can result.

Several policies that support unlimited folding and no folding were the subject of recent stud­

www.manaraa.com

31

ies. The unlimited folding policy FF+FIFO, described in more detail in the preceding chapter, is com­

pared to FF, equipartitioning, and other less promising disciplines in [Ghosal 91], It produced the best

performance, including when equipartitioning uses the best number of partitions considered in the

study. The performance parameter is the throughput to mean response time ratio, and the workload is a

mix of a small set of five applications. An application is allocated a single partition in the equipartition­

ing policy, but it is allocated at most the smallest number of processors that maximizes the

speedup*efiBciency parallel execution cost fimction in FF and FF+FBFO.

There are several issues with this study. First, a job is not allocated the number of processors

that minimizes its execution time under FF and FF+FIFO, including when the load is moderate and firee

processors are likely to remain unallocated for a long time. Second, the speedup curves are difficult to

estimate for many ^plications. The execution time of a program can strongly depend on the input, and

numerous applications have dynamic structures. Third, it is intuitive that superior scheduling algo­

rithms can be designed if the execution curves are known. For example, a job may wait until more

processors are available when waiting leads to better performance.

In the static space sharing policy proposed by Zahoijan and McCann [Zahoijan 90], an appli­

cation is allocated at most the smallest number of processors that maximizes its speedup, and folding is

unlimited. When a job terminates, a released processor is assigned to the waiting program whose exe­

cution time will be reduced the most if it receives an additional processor. The execution time of an

^plication that is allocated no processors is set to a very large value. Consequently, waiting applica­

tions are allocated one processor each first. Zahoijan and McCarm note that this property had a critical

influence on the performance of the scheme. It is assumed that the execution times on one processor

and the speedup curves of applications are known.

There are two issues with this policy; (1) applications that have long execution times are given

priority, and (2) servicing is eager (the maximum number of waiting applications are serviced when

processors are released). Many applications are expected to be allocated a small number of processors,

www.manaraa.com

32

and released processors are likely to idle for a long time because the waiting queue is expected to be

short. An advantage of this policy over FF+FIFO as implemented by Ghosal, et al., [Ghosal 91] is that

a program can be allocated the number of processors that minimizes its execution time. An eager policy

is compared to other disciplines that support unlimited folding in this study. It produces the worst

scheduling effectiveness and mean response times. The results also show that giving priority to longer

jobs can degrade performance significantly.

The traditional FF and FCFS policies were compared in a simulation study by Abraham and

Padmanabhan [Abraham 92], where FF produced significantly shorter mean response times. The ad­

vantage of FF is that it can allocate processors to any waiting request, whereas the head of the FIFO

waiting queue must be serviced first in FCFS. FF can yield superior system utilization. These policies

do not support ^plication folding.

The study reported in this chapter has two main goals. The first is to compare the no folding

and unlimited folding approaches to determining the number of processors to allocate to applications.

Under both approaches, the role of the job selection criteria is investigated. The second goal is to de­

termine how allocation should depend on the execution times; that is, should short or long jobs be given

priority?.

2.2 Allocation Policies

The target parallel computer consists of P identical processors, and allocation is topology-

independent. It is assumed that an application requests, upon arrival, a number of processors, denoted

by n, fi-om the allocation algorithm.

2.2.1 No Folding Allocation Policies

An ^plication is always allocated the number of processors it requested. The following poli­

cies are studied:

www.manaraa.com

33

First Come First Served (FCFS); Allocation requests are serviced in their order of arrival. The ad­

vantage of this policy is its feimess. However, it is expected to produce poor scheduling effectiveness

and mean response times. Processors remain idle if the application at the head of the waiting queue re­

quests more than the number of free processors, even though there may be a waiting request that can be

satisfied. Algorithms based on the first-fit allocation strategy solve this problem by allowing waiting

requests to be serviced out of arrival order.

First Fit (FF): The waiting queue is FIFO. A new application waits at the tail of the queue if the num­

ber of fi'ee processors, FP, is less than its processor demand. When processors are released, the waiting

queue is scanned and the first job whose processor requirement does not exceed FP is serviced. Scan­

ning continues until FP is zero or until all jobs in the queue have been examined. Processors do not idle

if their number is at least equal to the processor demand of a waiting appUcation.

First Fit Decreasing Size (FFDS); The waiting jobs are sorted in the non-increasing order of their

processor requests, and allocation is as in FF. The goal is to increase the number of busy processors by

giving priority to the largest job that can fit.

First Fit Increasing Size (FFIS): The waiting jobs are sorted in the non-decreasing order of their proc­

essor requests, and allocation is as in FF. The goal is to reduce the mean response times by increasing

the number of jobs nuining simultaneously. Intuitively, FFIS discriminates against large jobs more than

the previous algorithms.

Policies based on the best-fit strategy are not considered as best-fit appears to offer only a

slight advantage [Tuomenoksa 85] or some disadvantage [Ghosal 91] over first-fit.

2.2.2 Unlimited Folding Policies

A job may be allocated any number of processors that does not exceed its request. The four

algorithms that result fi'om the following modification to the no folding algorithms are included. An

arriving job is allocated min(«,/7') processors if fT^O, otherwise it waits. At a job completion, the cor­

www.manaraa.com

34

responding no folding algorithm is run. If processors are still free they are allocated to the head of the

waiting queue. The resulting policies are named FCFSUF, FF+FIFO [Ghosal 91], FFDS+FIFO, and

FFIS+FIFO respectively.

In addition, the following policy, denoted by EPFP (from Even Partitioning of Free Proces­

sors), is studied. The waiting queue is FIFO. As in the other unlimited folding policies, a new applica­

tion is allocated tnin(n,/7) processors if FP^O, otherwise it waits. Released processors are divided as

evenly as possible among the waiting ^plications. When the number of jobs does not divide FP, the

excess processors are allocated to the earliest arrivals, one to each. Applications are serviced eagerly;

that is, the maximum number of waiting applications is serviced when a job terminates.

2.3. Results

The algorithms are compared using mean response times and scheduling effectiveness, and

fairness curves.

2.3.1 Simulation Parameters

In the simulation experiments, the machine consists of P=64 identical processors. A new job is

characterized by three independently-generated parameters: the requested number of processors «, the

execution time and the efSciency i^n). Two distributions are used to model the values of n: the

uniform over the interval [2,P], and the truncated exponential with a mean of IS and 2^^. This mean

was chosen because it produced worse mean response times than other values in several simulation ex­

periments. The values of t{n) are distributed uniformly over the interval [10,200]. A pseudo-random

variable distributed uniformly over [0.4,0.9] produces the values of ^(n) under MISP speedup. The

efficiency values that correspond to a serial fraction greater than 0.5 are discarded. The character­

istics n, t(n) and ^n) are used in computing die execution time when the job is folded, as seen in

Chapter 1.

www.manaraa.com

35

During each run, the simulator generates 8500 jobs. To ignore startup effects, the performance

data obtained for the first 500 jobs is discarded.

2.3.2. Scheduling EfTectiveness

This performance parameter measures the ability of the algorithms to avoid processor fragmen­

tation. Utilizing a large percentage of the PEs is essential to the performance of parallel computing

systems as both program efficiency and scheduling effectiveness must be high for the system efficiency

to be high. The definitions of system efficiency and scheduling effectiveness are given in Chapter I.

The effectiveness values shown below have relative errors below 1% (tliey are typically much less than

1%) when the confidence interval is 95%.

2.3.2.1 The no folding policies

A comparison of the mean scheduling effectiveness of the no folding policies is shown in Fig­

ures 2.1 and 2.2. Their general ordering, from best to worst, is; FFDS, FF, FCFS, and FFIS. The mean

-• FCFS

•9—FF

— FFDS

^—FFIS

0.6 1 1 1 1 1 1 1 1
0.0001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Load Parameter

Figure 2.1: Mean scheduling effectiveness as a function of the load parameter for the no
folding policies, uniform size and execution time distributions.

www.manaraa.com

36

0.6 1 1 1 1 1 1 1 1
0.0001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Lx>ad Parameter

Figure 2.2; Mean scheduling effectiveness as a function of the load parameter for the no
folding policies, exponential size distribution, uniform execution time distribution.

effectiveness is high under light loads because it is highly likely that a job is serviced as soon as it ar­

rives. It drops as L increases because of processor fragmentation, which occurs when the number of

firee processors is less than the processor request of the head of the queue under FCFS, and when it is

smaller than the request of each waiting job under the first-fit policies. When the requests are exponen­

tially distributed, fragmentation is less severe and the mean Sg is higher because most jobs are small.

The effectiveness curves of FFDS and FF increase under heavy loads because the number of

waiting jobs and the probability of finding a job that fits are higher. This also explains why the effec­

tiveness of FFIS declines slowly (Figure 2.1) or increases (Figure 2.2) under heavy loads.

2.3.2.2 The unh'mited folding policies

These policies do not differ much in their scheduling effectiveness (approximately 5% at most),

as can be seen in Figures 2.3-2.5, and they are less effective than the no folding policies, except under

very high loads (e.g.. Figures 2.6 and 2.7). Their effectiveness curves drop more rapidly as the system

www.manaraa.com

37

FCFSUF,
FFIS+FIFO

FF+FIFO

FFDS+FIFO

EPFP

8
0.65 • •

0.6 -I 1 1 1 1 1 1 1 1 1

lE-04 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load Parameter

Figure 2.3: Mean scheduling effectiveness as a function of the load parameter for the unlimited
folding policies, exponential size distribution, imiform execution time distribution,
linear speedup

FCFSUF,
FFIS+FIFO

FF+FIFO

FFDS+FIFO

EPFP

0.65 1 1 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Load Parameter

Figure 2.4; Mean scheduling effectiveness as a function of the load parameter for the unlimited
folding algorithms, uniform size and execution time distributions, MISP speedup

www.manaraa.com

38

FCFSUF,
FFIS+FIFO

FF+FIFO

FFDS+FIFO

EPFP

0.7 --

0.65 -1 1 1 1 1 1 1 1 1 1 1 1

0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 I.I

Load Parameter

Figure 2.5; Mean scheduling effectiveness as a function of the load parameter for the unlimited
folding algorithms, exponential size distribution, uniform execution time
distribution, MISP speedup

FF+FIFO(Lin)

FF+FIFO(MlSP)

0.6 1 i 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I I.I

Load Parameter

Figure 2.6: Mean scheduling effectiveness as a fimction of the load parameter for the FF
poUcies, uniform size and execution time distributions.

www.manaraa.com

39

e
a
n

S
c
h
e
d
u
I

n
g

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Load Parameter

Figure 2.7; Mean scheduling effectiveness as a function of the load parameter for the FCFS
policies, uniform size and execution time distributions.

is loaded, reach minimum values at medium load levels, then rise rapidly as the load increases further.

When the load is very light, the effectiveness is high because most appUcations are not folded and the

factor by which an application is folded is small, on average. As the load increases, the percentage of

folded applications and the factor by which an application is expected to be folded also increase; that

is, the mean actual folding factor increases with the load (e.g.. Figure 2.8). This factor is the average,

over all jobs, of the ratio W/PQ/, where n is a job's si2s and Pgi the number of processors it is allocated.

Under medium system loads, the probability that there are no pending requests when proces­

sors are released is high, released processors are likely to remain idle for a long time, and high folding

fragmentation and poor scheduling effectiveness result. Note that the mean length of the waiting queue

is shorter under imlimited folding than under no folding. Under heavy loads, the probability that there is

a pending request is higher, released processors are likely to be allocated sooner, and the scheduling

effectiveness increases with the load.

FCFS

FCFSUF(Lin)

FCFSUF(MISP)

www.manaraa.com

40

M

t 3 ••

•FCFSUF

• FF+FIFO

• FFDS+FIFO

• FFIS+FIFO

•EPFP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Load Parameter

Figure 2.8: Mean actual folding factors as a function of the load parameter for the unlimited
folding policies, uniform size and execution time distributions, MISP speedup

In FCFSUF, the ^plication at the head of the waiting queue does not, unlike in FCFS, wait

until the exact number of processors it requested is available, and the scheduling effectiveness is not

much different from that of the unlimited folding FF policies. Because of the absence of the first-fit

phase, FCFSUF folds jobs less than FF+FIFO, as can be seen in Figure 2.8. Unlike FFIS, which suf­

fers significantly more fragmentation than FF and FFDS, FFIS+FIFO is slightly more effective than

the other two unlimited folding FF policies. Also, its mean folding fectors are smaller. FFDS+FIFO

produces the largest mean folding &ctors, and is the least effective FF variant. When compared to the

other unlimited folding policies, EPFP, which services the maximum number of waiting jobs, results in

much higher mean actual folding &ctors and lower scheduling effectiveness under high loads.

2.3.3 Mean Response Times

The typical user of a general purpose parallel machine is unlikely to be directly interested in

the scheduling effectiveness or system throughput. To this user, the expected response time is far more

www.manaraa.com

41

important. In this section, the mean response times of the policies are compared. The values shown

have relative errors that do not exceed 3% when the confidence interval is 95%.

2.3.3.1 The no folding policies

FFDS and FF produced shorter mean response times than FCFS and FFIS (Figures 2.9 and

2.10) because of their ability to better avoid processor fragmentation (Figures 2.1 and 2.2). Although

the goal of FFIS is to reduce the mean response times by simultaneously executing more applications,

it produced longer mean response times than FF and FFDS, including when most jobs are small (the

sizes are exponentially distributed), because its effectiveness is poorer. As expected, FCFS has the

worst performance due to the high Segmentation it induces. The performance of the policies is practi­

cally the same under low loads (L<0.3), when ^plications seldom have to wait.

1505 -r

0.0001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Load Parameter

Figure 2.9; Mean response time as a function of the load parameter for the no folding
algorithms, uniform size and execution time distributions

www.manaraa.com

42

M
e
a
n

R
e
s

P
0
n
s
e

T
1
m
e

555 T

505 ••

455

405 -•

355 -•

305 ••

255 -•

205

155 -•

105 it

•JK—FFDS
^—Fns

•—FCFS

0.0001 0.1 0.2 0.3 0.4 0.5

Load Parameter

0.6 0.7 0.8

Figure 2.10: Mean response time as a function of the load parameter for the no folding
algorithms, exponential size distribution, uniform execution time distribution

2.3.3.2 The unlimited folding policies

A study of the mean response times of the unlimited folding policies (Figures 2.11-2.13) leads

to the following observations:

1) The unlimited folding variants of the no folding policies differ much less in the mean re­

sponse times they produced. Folding reduced the importance of the job selection criteria, and it

has a strong influence on performance (see also Figures 2.6 and 2.7).

2) As the performance of EPFP is poor, the eager servicing of applications, recommended in

[Zahoijan 90], is a poor job selection strategy.

3) There is positive correlation between the mean actual folding factors and the mean response

times. Less folding is better.

4) Although FFDS is the best no folding first-fit policy, FFDS+FDFO is the worst unlimited

folding first-fit policy because it folds jobs more than FF+FIFO and FFIS+FIFO (e.g.. Figure

2.8).

www.manaraa.com

43

M
e
a
n

R
e
s

P
0
n
s
e

T
1
m
e

805 T

605 • -

405 ••

•FCFSUF

•FF+FIFO

• FFDS+FIFO

• FFIS+FIFO

•EPFP

0.0001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Load Parameter

Figure 2.11: Mean response time as a fimction of the load parameter for the unlimited folding
policies, uniform size and execution time distributions, linear speedup

705 T

M
e
a
n

R
e
s

P
0

n
s
e

T
i
m
e

605 -

FCFSUF

FF+FIFO

FFDS+FIFO

ms+nFo
EPFP

205 -•

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Load Parameter

Figure 2.12: Mean response time as a function of the load parameter for the unlimited folding
policies, uniform size and execution time distributions, MISP speedup

www.manaraa.com

44

455

m 155

M
e 405

205
T

355
R

n 255

e

s
e

o

a
n

s 305

P

e
305

105

FCFSUF

FF+FIFO

FFDS+FIFO

FFIS+FIFO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load Parameter

1.1

Figure 2.13: Mean response time as a function of the load parameter for the unlimited folding
policies, exponential size distribution, imiform execution time distribution, MISP
speedup

5) FCFSUF is slightly superior to FF+FIFO. FCFSUF is more effective, and its mean actual

folding factors are smaller. This is unlike FCFS, which is much worse than FF.

6) Although FFIS is worse than FF and FFDS, FFIS+FIFO is superior to FF+FIFO and

FFDS+FEFO because it folds jobs less, on average, while achieving comparable scheduling ef-

7) When the efiGciency of applications increases significantly with a decrease in the number of

processors they are allocated (e.g., MISP speedup model), no folding is better than unlimited

folding under low to moderate loads but unlimited folding is superior under high to very high

loads, as can be seen in Figures 2.14 and 2.15. However, when linear speedup is assumed, no

folding is superior to unlimited folding under most or all system loads, depending on the distri­

bution of the processor requests, as can be seen in the same figures.

For example, FF starts outperforming FF+FIFO at L«0.75 under linear speedup in Figure

fectiveness.

www.manaraa.com

45

905 T

M
e 805 +

a
n

FF+FIFO(Lin)

FF+FIF0(M1SP) 705

R
e 605 -•
s

P 505
0

n
s 405
e

J 305 - -

i
m
e

205

105

lE-04 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load Parameter

Figure 2.14; Mean response time as a ftmction of the load parameter for the FF policies,
uniform size and execution time distributions

405 T

FF+nFD(Un)

FF+nFO(MlSP)

Load Parameter

Figure 2.15; Mean response time as a function of the load parameter for the FF policies,
exponential size distribution, uniform execution time distribution

www.manaraa.com

46

2.14, whereas the crossover load level in the same figure is ^proximately 0.55 under MISP speedup.

The dependence of the crossover load levels on the distribution of job sizes is also illustrated in Figures

2.14 and 2.15. Under linear speedup, for example, FF outperforms FF+FIFO across all loads in Figure

2.15, but FF+FIFO is better than FF under heavy loads in Figure 2.14.

As the efficiency of parallel jobs normally increases when the number of processors they are

allocated decreases, unlimited folding is expected to outperform no folding significantly under high to

very high loads, but no folding is expected to be superior under light to medium loads.

Although a folded job begins execution sooner, it may complete later than if it waits for more

processors to become available, depending on its starting time and the number of processors it is allo­

cated. Superior scheduling algorithms can be designed if the execution times as functions of processor

allocation are known a priori. For example, the algorithm can ensure that a folded application does not

complete later than it would if it waits for the number processors it requested to become available.

2.3.4 Fairness

A fairness curve gives the average response times as a fimction of the job size (i.e., processor

request) at a load level of interest. The job size is chosen because it is the sole job characteristic used in

making the allocation decisions. Different criteria should be used if other characteristics are utilized.

There is a tradeoff between &imess and performance. FCFS is relatively feir. The mean turn­

around times of large jobs are not much longer than those of small jobs (see Figures 2.16 and 2.17).

However, its mean response time performance is poor under medium to high loads. The performance of

FF and FFDS is significantly better than that of FCFS, but they are not as fair. For example, when the

sizes are exponentially distributed, the turnaround times of large jobs are considerably longer than

those of small jobs under the three no folding FF variants (Figure 2.17). Based on the three perform­

ance parameters, FFIS and FCFS are poor no folding policies.

www.manaraa.com

47

T
u
r
D

A a
V r

0

u

n

d

T
1
m
e

24 32 40

Job Size

Figure 2.16: Average turnaround time as a function of the job size for the no folding policies,
uniform size and execution time distributions, L=0.6

1005 Y
A
V

905

e

r 805

a

8 705 - -

e
T 60S

T i
u m

r e 505 • "

n
a 405 - -

r
0 305
u

n
d

205

105

16 24 32 40

Job Size

48 56 64

Figure 2.17; Average turnaround time as a function of the job size for the no folding policies,
exponential size, uniform execution time, L=0.6

www.manaraa.com

48

In general, the mean response times under the unlimited folding policies increase significantly

with the job size (Figures 2.18-2.20) because larger applications are typically allocated a smaller frac­

tion of the number of processors they requested. Even FFDS+FIFO, which gives priority to larger jobs,

and FCFSUF discriminate against large jobs considerably. Under FCFSUF, large jobs have signifi­

cantly shorter turnaround times than under FFIS+FIFO when the sizes are distributed uniformly and

the load is high (Figure 2.19), even though FFIS+FIFO produces the shortest mean response times.

However, the &imess curves of FFIS+FIFO and FCFSUF do not differ significantly when the sizes are

exponentially distributed (Figure 2.20). Overall, FCFSUF has the best fairness characteristics.

In the fairness figures (Figures 2.16-2.20), the confidence interval is 95% and the maximum

relative error is 5% when the uniform job size distribution is used, but they are 90% and 10%, respec­

tively, under the truncated exponential job size distribution.

355

T i

A
V

e
r

a
r
0

a

u

u m

n
d

g

FCFSUF

FF+FIFO

FFDS+FIFO

FFIS+FIFO

2 8 16 24 32 40 48 56 64

Job Size

Figure 2.18: Average turnaround time as a function of the job size for the unlimited folding
policies, uniform size and execution time distributions, MISP speedup, L=0.6

www.manaraa.com

49

605 T

A 555 FCFSUF

FF+FIFO

FFDS+FIFO

FFIS+FIFO

505 ••

455 ••

^ 405 -•

' 355 -
u m

305 --

255 -•

205

155

105

2 8 16 24 32 40 48 56 64

Job Size

Figure 2.19: Average turnaround time as a function of the job size for the unlimited folding
policies, uniform size and execution time distributions, MISP speedup, L=0.9

1105 T

1005 -• FCFSUF

FF+FIFO

FFDS+FIFO

FFIS+FIFO

905 -•

805 -•

70S ••
T

T i
u m
r e

605 ••

505 -•

405 ••

305 --

205

105

2 8 16 24 32 40 48 56 64

Job Size

Figure 2.20: Average turnaround time as a fimction of the job size for the unlimited folding
policies, exponential size, uniform execution time, MISP speedup, L=0.9

www.manaraa.com

50

2.4. Other Policies

The goal of studying these policies is to estimate the improvement in average response times

that could be expected when t{n) is known a priori.

First Fit Increasing Total Demand (FFITD); Waiting jobs are sorted in the non-decreasing order of

their total processing demand, defined as mt{n). Job selection and allocation are as in FF. This no

folding algorithm produced shorter mean response times than FFIS but performed worse than FF and

FFDS, as can be seen in Figure 2.21.

M
e
a
n

m
s

e P
o
n
s
e

LE-04 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load Parameter

Figure 2.21; Mean response time as a function of the load parameter, uniform size and
execution time distributions

Unlimited folding Smallest Total Demand First (STDFUF); Waiting applications are sorted in the

non-decreasing order of their total processing demand. The head of the queue waits until there is one or

more fi-ee processor. When serviced, it is allocated niin(n,i<P) processors. A new job is allocated

min(M,i7') processors if FP>Q. It waits if FP=(i.

Unlimited folding Shortest Job First (SHJFUF): The waiting jobs are sorted in the non-decreasing

1505 FCFS

1305 IK—FFDS
^—FHS
•JK—FFTTD 1105

905 -•

705

505

305

105

www.manaraa.com

51

order of the values of t{n), and allocation is as in STDFUF.

Unlimited folding Longest Job First (LOJFUF): Waiting jobs are sorted in the non-increasmg order

of the values of tin), and allocation is as in STDFUF.

The mean response times of STDFUF, SHJFUF, and LOJFUF are compared to those of

FCFSUF in Figures 2.22-2.24. In Figure 2.22, the execution times are modeled by a truncated expo­

nential distribution with a mean of 10 and an interval of [1,100], LOJFUF performed poorly under

heavy loads and MISP speedup, but SHJFUF and STDFUF outperformed FCFSUF. These results

show that; (1) a reduction in mean response times can be achieved under heavy loads when shorter jobs

are given priority, and (2) giving priority to longer jobs can lengthen the mean response times signifi­

cantly. Note that the reduction in mean response times associated with SHJFUF and STDFUF is

smaller than their degradation associated with LOJFUF in Figures 2.22-2.24. If the execution times are

not estimated adequately performance can degrade, as suggested by the poor mean response times of

FCFSUF

STDFUF

SHJFUF

LOJFUF

O.OOOl 0.2 0.4 0.6 0.8 1 1.2

Load Parameter

Figure 2.22 ; Mean response time as a fimction of the load parameter, MISP speedup, uniform
size distribution, exponential execution time distribution

www.manaraa.com

52

705 X

FCFSUF

STDFUF

SHJFUF

LOJFUF

M

® 605 --
a
n

R 505 --
e
s

P 405 -•
o
n
s

305 •• e

T

' 205 - -
m
e

105

0.2 0.0001 0.4 0.6 0.8 1.2 1

Loiui Parameter

Figure 2.23 : Mean response time as a flmction of the load parameter, MISP speedup, uniform
size and execution time distributions

555 T

FCFSUF

STDFUF

SHJFUF

LOJFUF

505 ••
e
a

455 -• n

R 405 +
e
5

P
0

n 305 ••

s
e 255 -•

355 -•

205 ••
I

m
e 155 --

105

0.0001 0.2 0.4 0.6 0.8

Load Parameter

Figure 2.24 : Mean response time as a fimction of the load parameter, linear speedup, uniform
size and execution time distributions

www.manaraa.com

53

LOJFUF. Moreover, the degradation can be severe under very heavy loads, as indicated by the results

displayed in Figure 2.22.

2.5 Conclusions

The efficiency of a parallel application typically increases significantly when the number of

processors it is allocated decreases, and it is often worse than that predicted by speedup curves of the

MISP type when n is high. Consequently, unlimited folding is expected to be significantly superior to

no folding under high system loads. However, it is expected to be inferior to no folding under moderate

loads because of the high processor fiagmentation it can produce.

When the execution times of applications are not known a priori, FCFSUF is the best policy

considered in this study under heavy loads, but FFDS and FF are superior under moderate loads. When

compared to FCFSUF, FFIS+FIFO can produce slightly shorter average response times, but it can dis­

criminate against large jobs significantly more than FCFSUF under heavy loads. If the values of t{n)

are known, giving priority to shorter jobs can improve performance. However, If these values are esti­

mated poorly performance can degrade significantly, as iadicated by the poor mean response times of

LOJFUF.

FF+FIFO outperformed FF in [Ghosal 91]. However, the results of this study show that FF

(and FFDS) can outperform FF+FIFO. FF+FIFO suffers high processor fiagmentation under most

load levels, but it can outperform FF under high loads for two reasons; (1) it exploits the increase in

efficiency that commonly results fiom folding, and (2) fiagmentation is less severe when the load is

high.

When a job completes, the unlimited folding EPFP algorithm services the maximum number of

waiting applications. This eager servicing of requests in static space sharing, recommended by Zahor-

jan and McCann [Zahoijan 90], can lead to poor performance. EPFP is the worst unlimited folding

policy studied in this chapter.

www.manaraa.com

54

The results of this study indicate that increasing the degree to which a job is folded with the

system load should be superior to no folding and unconstrained folding. Such a strategy should produce

superior system utilization, while exploiting the efficiency advantage of folding.

www.manaraa.com

55

3 ADAPTIVE STATIC SPACE SHARING POLICIES

No folding static space sharing job scheduling disciplines do not take advantage of the in­

crease in efficiency that typically results when a job is allocated fewer processors, and they can induce

high processor fi^gmentation because applications wait until they can be allocated the number of proc­

essors they requested. Their mean response times start increasing sharply at load levels significantly

smaller than one. The level is approximately 0.6 for FCFS and FFIS and 0.7 for FF and FFDS in Fig­

ures 2.9 and 2.10. The unlimited folding poUcies exploit the efficiency advantage of folding, but they

can suffer considerably more overall fragmentation under most load levels because of folding fragmen­

tation. The fragmentation problem is not severe under very heavy loads when released processors are

likely to be allocated immediately or soon after their release.

As low processor fragmentation is achieved without folding under moderate loads but with un­

limited folding under very high loads, superior performance should result if the maximum degree to

which jobs are folded increases with the load. In this chapter, adaptive folding is investigated with the

goal of reducing fragmentation and mean response times in topology-independent static space sharing.

Several program-based algorithms that implement this strategy but differ in the folding method and the

job selection criteria are studied. Detailed simulation is used to compare them to first-fit and FF+FIFO.

The results show that adaptive folding offers substantial performance advantage over no folding and

unlimited folding. It can produce higher and more stable system utilization and significantly shorter

mean turnaround times. Moreover, the performance of the best algorithm proposed (Multifolding First

Fit) is only slightly sensitive to the order in which ^plications are serviced. Its performance did not

improve significantly when the shortest job, the job with the smallest processor request, and the job

with the smallest total processing demand were given priority.

www.manaraa.com

56

3.1 Introduction

The methcxl used in determining the number of processors to allocate to parallel ^plications

strongly influences system performance under static space sharing, as seen in Chapter 2. It has a strong

effect on fi-agmentation and q)plication efiBciency.

The target system is subdivided into partitions of equal size and an application is permanently

assigned to a single partition in several recent studies of static space sharing policies [Ghosal 9I][Naik

93b][Setia 93]. The results show that performance improves significantly if the size of the partitions

decreases when the system load increases under both uniprogrammed [Ghosal 9I][Naik 93b] and mul-

tiprogrammed equipartitioning [Setia 93], Several partition sizes were considered. However, no algo­

rithm that determines the size as function of the system load is used or proposed in these studies.

Moreover, the issue of how to dynamically change it, while maintaining equipartitioning, in response to

load changes in these static allocation strategies is not dealt with.

Decreasing the size of the partitions when the load increases has several benefits. By allocating

a large number of processors to applications under moderate loads, reasonable system utilization and

mean response times can be achieved. Applications that request a large number of processors are allo­

cated a high fraction of their request, and they do not take too long to complete. However, because

small ^plications are also allocated large partitions under moderate loads internal processor fi'agmen-

tation can be high. When the partitions are smaller, under heavier loads, system utilization is not likely

to suffer significantly because there are more jobs in the system (i.e., more partitions can be allocated).

Moreover, reducing the partitions' size reduces internal fragmentation and improves the execution ef­

ficiency of more q)plications. System efficiency may increase monotonically and significantly with the

system load when the size of the partitions increases concurrently. Folding is assumed in adaptive par­

titioning. An application executes on the number of processors in the partition it is allocated, which can

be less than the application's processor request.

High external fragmentation can result when a program is not allocated more than one parti­

www.manaraa.com

57

tion. For example, in a machine with P processors a job that requests P-l processors is allocated only

PI2 processors when there are two machine partitions, even when the second partition is free and there

are no other pending allocation requests. Internal and external fragmentation depend on the distribution

of processor requests. However, all applications request P processors in [Setia 93], and a small set of

five applications that request 1,2,4,8, andP=16 processors is used in [Ghosal 91].

Topology-independent program-based partitioning avoids the internal firagmentation problem

and can reduce external fragmentation because applications may be allocated the exact number of

processors they request. It is again assumed that a new application requests a number of processors, n,

from the allocation algorithm.

In addition to the no folding and unlimited folding methods for determining the number of

processors to allocate to applications in program-based static space sharing, limited folding can be

used. Folding is limited if an application waits until it can receive at least some number, not necessarily

fixed, of processors. Recall that folding is unlimited when the lower limit is one processor.

In [Sevcik 89], it is shown that limited folding can improve performance significantly under

heavy loads. In the workload model used, detailed knowledge of application parallelism is assumed and

the overhead of parallel execution is due to load imbalances within applications. The speedup of a job

is linear when the variance of its parallelism is zero. Otherwise, the speedup is sublinear. An applica­

tion is not folded when its parallelism variance is zero, but it is folded by a &ctor that is an increasing

function of the variance and system load when the variance is greater than zero. An issue with this

study is the assumption that parallelism characteristics are known in detail. The results in this disserta­

tion are different in that they show that limited folding is also superior to no folding when the applica­

tions have linear speedup.

FF, FCFS, and a limited folding policy that uses a fixed maximum folding factor were com­

pared in [Abraham 92], A parallel task waits until it can be allocated at least 1/3 or 1/4 of the number

of processors it requested in the limited folding policy. These values produced good mean response

www.manaraa.com

58

times. FF outperformed FCFS, but the limited folding policy yielded the shortest mean response times.

In the limited folding scheme proposed and compared to equipartitioning in [Naik 93b], a job

waits until it can receive at least the minimiun of its processor request and a fixed number of proces­

sors. When a job terminates, released processors are divided as evenly as possible among waiting ap­

plications under this constraint. The fixed number of processors used (32 processors) is not explained.

It presumably gave good mean response times under the system and workload models used. The

scheme outperformed fixed equipartitioning across a broad range of system loads, including when the

best partition size considered in the study is used.

An issue with the last two limited folding policies is whether the maximum folding fector,

^^max> should be fixed. Assuming linear speedup, for example, and a policy that does not support

folding, an ^plication that must wait is not expected to start execution before r*Tg time units. There­

fore, it can be folded by 1+r without changing its expected completion time. The quantities Tg and r*Tg

are the expected execution time and residual lifetime of an application that is allocated the number of

processors it requested. The application can be folded by if it must wait for a job that is folded

hyfm- Thus, the folding fector should increase with the load and depend on the distribution of the exe­

cution times. For example, r=\ for the exponential distribution, rw2/3 for the uniform distribution over

[Tmin,Tmax] when Tmin/Tmax is small, and r=l/2 for constant execution times. In general, l/2<r<l.

Folding therefore should be greater when the execution times are distributed exponentially than when

they are distributed uniformly, for example. As the series converges to when r is

less than one, a fixed maximum folding &ctor can be expected to produce good performance under

high loads and a specific execution times distribution.

The expected residual lifetime of a job folded by the same factor is shorter under MISP

speedup than under linear speedup because of the increase in efSciency that results firom folding. How­

ever, to estimate the &ctor by which an application can be folded without changing its expected com­

pletion time the ^plication's execution times as fimction of the number of allocated processors should

www.manaraa.com

59

be known. Nonetheless, the best folding &ctor depends on the load level and the efiGciency of applica­

tions under MISP speedup. The improvement in the performance of equipartitioning when the number

of partitions increases with the system load [Chosal 91][Naik 93b][Setia 93] demonstrates that folding

should increase with this parameter. Moreover, the comparison of no folding and unlimited folding in

Ch£q)ter 2 and the results in [Sevcik 89] show that folding should increase with the workload ineffi­

ciency and the load.

3.2 Allocation Policies

When job execution times as fimction of processor allocation are not known, as it is assumed

in this research, the best folding &ctor can not be determined. Consequently, two methods, based on

first-order statistics, are used to compute the maximum folding &ctor, PF^(jx- The first

flmax, is determined as follows. A worst-case estimate of the time needed to finish the jobs currently in

the system is [Pci/(Se*P)'*Te time units {Pd is the total processor demand of the jobs). Assuming high

scheduling effectiveness (•S'e»l), an application is expected to complete within this time if it is folded by

at mostflmcaf^PdlP'\- The assumption that 5ewl is validated by the simulation results. In this method,

the completed fi'action of the executing jobs is ignored.

The second maximum folding fector,is equal to flnuoci\-f)NrlPu, where Nf. is the

total number of processors requested by the executing eqjplications and P^ is the number of busy proc­

essors. The ratio NfJPu is the mean current folding fector, and {\-r)NrlPu corresponds to an estimate

of the completed fiction of the active applications.

The following limited folding policies are studied:

Folding FCFS (FECES); The head of the FIFO waiting queue or a job that arrives while the queue is

empty is allocated min(fP,rt) fi-ee processors if their number FP > \nlFFniax\- When FFtnaif^\, the

traditional FCFS results. The unlimited folding variant is obtained when an application can be allo­

cated a single processor.

www.manaraa.com

60

Folding First Fit (FFF): A new job waits in a FIFO queue until it can receive at least \nlFFmcD^

processors. When selected for service, a job is allocated vmiFP,n) processors.

Folding Smallest Job First (FSJF): This is a variant of the last algorithm. It differs in that waiting

jobs are sorted in the non-decreasing order of their processor demand. The goal is to improve the mean

response times by executing more simultaneously.

Multifolding First Fit (MFFF): The waiting queue is FIFO. During an allocation scan of the queue, a

job is selected for service if {x+ri)/FP < where x is the total processor requirement of the jobs

selected so for. At the end of a scan, the selected jobs are folded by FFacf=x/FP. Each is allocated ap­

proximately (due to arithmetic errors) n/FFact processors. Multifolding algorithms differ from the re­

maining algorithms in that they may fold multiple applications per allocation scan.

Multifolding Smallest Job First (MFSJF); This is a variant of the last algorithm where waiting re­

quests are sorted in the non-decreasing order of their processor requirement. The goal is again to im­

prove the mean response times by executing more jobs simultaneously.

When FF,|,3x is load-dependent, there is an allocation scan per job arrival or departure.

3.3 Results

The allocation policies are compared using mean response times and scheduling effectiveness,

and &imess curves.

3.3.1 Simulation Parameters

The target machine consists of P=64 identical processors, and 2^^. The uniform and the

trimcated exponential distributions are used to model the job processor requests (i.e., the values of n)

and the execution times on n processors. When the requests are modeled by the truncated exponential

distribution, a mean of 15 is used. The interval of the execution times on the requested number of proc­

essors is [10,200] when they are distributed uniformly. It is [1,100], the mean is 10, and the resulting

www.manaraa.com

61

true mean is approximately 11 under the truncated exponential execution times distribution. A pseudo­

random variable distributed uniformly over [0.4,0.9] models the initial job e£Bciency values under

MISP speedup. However, the values that correspond to a serial fi'action greater than 0.5 are ignored.

The simulator generates 8500 applications per run. To ignore startup effects, the performance

data of the first 500 jobs is discarded. The nimiber of runs is such that the mean response times ob­

tained have relative errors not exceeding 5% under the 95% confidence interval. The scheduling effec­

tiveness values have relative errors below 1% (they are typically much less than 1%) imder the same

confidence interval.

The results shown are for PFmarflmax- second folding fector f2max change the

mean response times and scheduling effectiveness values significantly, and is less practical because it

depends on the distribution of the execution times through r.

3.3.2 Scheduling Effectiveness and Mean Response Times

3.3.2.1 No folding, unlimited folding, and limited folding

Adaptive limited folding is superior to no folding and unlimited folding. It produced higher

system utilization (scheduling effectiveness) and shorter mean response times under the processor re­

quests, execution times, and speedup assumptions considered in this study. For example, the effective­

ness curves of the three first-fit variants FF, FF+FIFO, and FFF are compared in Figures 3.1 and 3.2

under the uniform execution time distribution and MISP speedup. FFF yielded more stable and higher

effectiveness. The performance advantage of FFF is less significant in Figure 3.2 because the requests

are distributed exponentially. Most jobs are small then, and their number, under the same system load,

is higher than imder the uniform distribution. Both &ctors reduce processor fragmentation in the three

policies, but the reduction is higher under FF+FIFO and FF.

www.manaraa.com

62

0.85

u n

Fr+FIFO

n s

0.65 1 1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Load Parameter

Figure 3.1; Scheduling effectiveness as a function of the load parameter, MISP speedup,
uniform size and execution time distributions

0.95 -•

0.85 ••

0.8 ••

0.75 -•

FF+FIFO

0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Load Parameter

Figure 3.2: Scheduling effectiveness as a function of the load parameter, MISP speedup,
exponential size distribution, uniform execution time distribution

www.manaraa.com

63

The mean response times of the three first-fit variants when the job sizes and execution times

are uniformly distributed are compared in Figures 3.3 and 3.4. FFF yielded shorter mean response

times than FF and FF+FIFO across all load levels. In Figure 3.3, where MISP speedup is assumed, the

mean response times are 30-40% longer under medium to high load levels when FF+FIFO is compared

to FFF. The degradation is approximately 30% under Z,=0.4 and L=\, 40% under i=0.6 and L=0.8,

and 20% under L=0.2 and L=1.2. The advantage of limited folding over unlimited folding is less sig­

nificant under very high load levels because processors are unlikely to remain idle then, even if folding

is unconstrained. In Figure 3.4, where linear speedup is assumed, the degradation is more significant. It

is approximately 40% under L=0.2, 60% under X=0.5, 70% under L=0.1, and 50% under L=0.9. FFF

outperformed FF and FF+FIFO under both linear and sublinear speedup curves.

705 T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Load Parameter

Figure 3.3; Mean response time as a fimction of the load parameter, MISP speedup, uniform
size and execution time distributions

www.manaraa.com

64

FF+nro

1E4)4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Load Parameter

Figure 3.4; Mean response time as a function of the load parameter, linear speedup, uniform
size and execution time distributions

The advantage of FFF over FF+FIFO is more moderate in Figure 3.5 than in Figure 3.3 be­

cause most jobs are smaller and their number is higher under the same load level (the processor re­

quests are modeled by the truncated exponential distribution). The degradation in performance pro­

duced by FF+FIFO in Figure 3.5 is approximately 10% under L=OA, 20% under L=0.6, 30% under

Z,=0.8, and 15% under Z,=1.2.

Because FFF is more effective than FF, it saturates under higher loads, including when linear

speedup is assumed (e.g.. Figures 3.3-3.5). The saturation loads are much higher under MSP speedup

because of the increase in efficiency that results from folding. The mean response time performance

advantage of FFF over FF is very high under heavy loads. For example, the performance of FF under

Z,=0.8 is worse than that of FFF under Z=1.2 in Figure 3.3, and the mean response time of FF is ap­

proximately double that of FFF under i=0.7 in Figure 3.3 and under Z,=0.8 in Figure 3.4.

www.manaraa.com

65

FF+FIFO

Load Parameter

Figure 3.5; Mean response time as a function of the load parameter, MISP speedup,
exponential size distribution, uniform execution time distribution

Even though FF does not exploit the folding efiSciency improvement &ctor, it is superior to

FF+FIFO under low to medium system loads and MISP speedup because of its ability to utilize more

processors. When linear speedup is assumed, FF is better than FF+FIFO under most or all system

loads, as seen in the preceding chapter.

3.3.2.2 Limited folding policies

The mean response times of the five limited-folding poUcies are compared in Figures 3.6-3.9

under MISP speedup and the four combinations of the execution time and size distributions considered.

These results show that:

1) FFF and FFCFS are inferior to MFFF, FSJF, and MFSJF.

2) The mean response times produced by MFFF, FSJF, and MFSJF do not differ

significantly.

www.manaraa.com

66

555 T

• FFF

—•—FSJF

—±—FFCFS

—— MFFF

— — M F S f f

0.0001 0.2 0.4 0.6 0.8 1 1.2
Load Parameter

Figure 3.6; Mean response time as a function of the load parameter, MISP speedup, uniform
execution time and size distributions

-•—FFF

-•—FSJF

-Jt—FFCFS

X—MFFF
•jl^MFSJF

Load Parameter

Figure 3.7; Mean response time as a function of the load parameter, MISP speedup, uniform
execution time distribution, exponential size distribution

www.manaraa.com

67

100 -r

M
e
a
n

R
e
s

P
0
n
s
e

T
1
m
e

MFFF

MFSJF

FFF-Best Fixed

0.0001 0.2 0.4 0.6 0.8
Load Parameter

1.2

Figure 3.8: Mean response time as a function of the load parameter, MISP speedup,
exponential time distribution, uniform size distribution

FFF

'fl—FSJF

-ik—FFCFS

MFFF

MFSJF

Load Paraffleter

Figure 3.9; Mean response time as a function of the load parameter, MISP speedup,
exponential execution time and size distributions

www.manaraa.com

68

3) FFCFS performs only slightly worse than FFF because the application at the head

of the waiting queue no longer waits until the exact number of processors it requested

is available.

As FFF is not the best limited folding policy, the advantage of adaptive limited folding over no

folding and unlimited folding is higher than shown in Figures 3.3 and 3.5.

When linear speedup is assumed, FFF can produce shorter mean response times than MFFF

and MFSJF (e.g.. Figure 3.10). However, the speedup of parallel applications is typically sublinear,

and it is often worse than that predicted by an MISP speedup curve, especially when n is high. As a

result, MFFF is expected to outperform FFF significantly in practice.

805 T

M
e
a
n

c
P
o
n
s
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Load Parameter

Figure 3.10: Mean response time as a fimction of the load parameter, linear speedup, uniform
size and execution time distributions

MFFF produced lower scheduling effectiveness values than FFF (e.g.. Figures 3.11 and 3.12),

however it resulted in shorter response times under MISP speedup because it takes more advantage of

the increase in efiSciency that results from folding. The mean actual folding factors of MFFF are larger

than those of FFF, as can be seen in Figures 3.13 and 3.14, because MFFF can fold multiple applica-

705 4 FFF

B MFFF

A, MFSJF 60S

505

405

305

205

105

www.manaraa.com

69

0.99 -•

E 0.97 - -

0.95 • •

0.93

0.91

0.89 • •

0.87 - •

MFFF+MFSJF

I
0.0001 0.4 0.6 0.8

Load Parameter

Figure 3.11: Mean scheduling effectiveness as a function of the load parameter, MISP
speedup, uniform execution time and size distributions

FFCFS

FFF+FSJF

MFFF+MFSH'

0.85 -I 1 1 i 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Load Parameter

Figure 3.12; Mean scheduling effectiveness as a function of the load parameter, MISP
speedup, exponential execution time and size distributions

www.manaraa.com

70

5 T

-•—FSJF

-A—FFCFS

X MFFF

•j|g—MFSJF

O.J --

0 -I 1 1 1 1 1 1
0.0001 0.2 0.4 0.6 0.8 1 1.2

Load Parameter

Figure 3.13; Mean actual folding factor as a function of the load parameter, MISP speedup,
uniform size and execution time distributions

s T

••—FSJF

-A—FFCFS

—MFFF

^—MFSJF

0 H 1 1 1 1 1 1
0.0001 0.2 0.4 0.6 O.S 1 1.2

Load Parameter

Figure 3.14: Mean actual folding factor as a function of the load parameter, MISP speedup,
exponential time distribution, uniform size distribution

www.manaraa.com

71

tions per aUocation scan. These figures also show that the mean actual folding Actors are larger when

the execution times are distributed exponentially. FFF outperformed MFFF under linear speedup be­

cause it is more efiective.

The mean scheduling effectiveness values are suboptimal because of processor fragmentation.

Fragmentation is low under light loads because applications seldom have to wait, most applications are

not folded, and the &ctor by which an ^plication is folded is small on average. It is also low under

high loads because released processors are likely to be allocated immediately or soon after their release.

The number of waiting applications and the probability that a job will arrive soon increase with the

system load.

FFF was also simulated under fixed maximum folding &ctors. The results of these experiments

(e.g.. Figures 3.15 and 3.16) also show that folding has a very strong influence on performance, and

the best fixed increases with the load and depends on workload characteristics. Excessive mean

response times can result under high to very high loads if is ^ small, and the best fixed maxi­

mum folding &ctor is larger when the execution times are distributed exponentially than when their

distribution is uniform.

These results confirm that the advantage of limited folding over unlimited folding depends on

the load and the distribution of the execution times. The mean response times increase relatively more

under Z,=0.8 than under L=\2 when FFfffg^ increases fi-om its best value to ? in Figures 3.15 and

3.16. As folding should be lower under the uniform execution times distribution, the relative increase is

higher in Figure 3.15 than in Figure 3.16.

A comparison of the mean response times of the adaptive FFF and FFF that uses the best fixed

FFfffox (FFF-Best Fixed) under MISP speedup and the uniform job sizes distribution shows that they

do not differ significantly under this workload model (Figures 3.6 and 3.8).

www.manaraa.com

72

Fixed Maxiinum Folding Factor

Figure 3.15: Mean response time as a fimction of the fixed maximum folding factor for FFF,
MISP speedup, uniform size and execution time distributions

1 2 3 4 6 8 14 64
Fixed Maximum Folding Factor

Figure 3.16; Mean response time as a function of the fixed maximum folding &ctor for FFF,
MISP speedup, uniform size distribution, exponential execution time distribution

www.manaraa.com

73

3.3.2 Fairness

Sets of curves are used to characterize the &imess of the scheduling policies. Each contains

the average turnaround times as a fimction of the job processor demand under a load level of interest

(the processor demand is chosen because it is the sole job characteristic used by the algorithms). FSJF

causes large jobs to have excessive response times under moderate to high loads, as can be seen in Fig­

ures 3.17 and 3.18. Moreover, its mean response time performance under MISP speedup is slightly

worse than that of MFFF. MFSJF offers insignificant mean response time performance advantage over

MFFF, and it has worse fairness characteristics. FFCFS discriminates against large jobs less than

MFFF, but its mean response times are longer for all job sizes. Based on the three performance pa­

rameters considered, MFFF is more promising than FFF, FFCFS, FSJF, and MFSJF.

Note that the policies &vor small jobs because they are likely to have shorter waiting and exe­

cution times. It is easier to find enough processors for allocation to these jobs, and they are likely to be

240 T

A
V ;

-•—FSJF

-•—FFCFS

A MFFF

^— MFSJF

e
r

a 200 • •
g
e

T 180 ••
T i
u m
r e 160 ••
n
a
r 140

o
u

d

2 8 16 24 32 40 48 56 64

Processor demand (n)

Figure 3.17; Mean turnaround time as a fimction of the processor demand, 1=0.6, MISP
speedup, imiform size and execution time distributions

www.manaraa.com

74

420 •-

r 370

r 320 ••

a n 270 -•

FSJF

FFCFS

MFFF

MFSJF

FFF

. 170 ••

120

24 32 40

Processor demand (n)

Figure 3.18; Mean turnaround time as a function of the processor demand, Z,=I, MISP
speedup, uniform size and execution time distributions

allocated a larger fraction of their processor demand. A comparison of the fairness curves of MFFF to

those of the no folding and unlimited folding policies studied in Ch^ter 2 shows that they have better

&imess characteristics.

3.4 Other Policies

The goal of studying the following additional multifolding policies is to estimate the improve­

ment in mean response times that may be expected when /(«) is known a priori. They differ from MFFF

in the sorting order of waiting applications.

Multifolding Smallest Total Demand First (MFSTDF): Waiting applications are sorted in the non-

decreasing order of their total processing demand, defined as n*t(n), and allocation is as in MFFF.

Multifolding Shortest Job First (MFSHJF): The waiting jobs are sorted in the non-decreasing order

of the values of t{n), and allocation is as in MFFF.

www.manaraa.com

75

Multifolding Longest Job First (MFLOJF): The waiting jobs are sorted in the non-increasing order

of the values of t(n), and allocation is as in MFFF.

The mean response times of these policies were compared to those of MFFF under MISP

speedup. MFSTDF and MFSHJF ou^rformed MFFF, but MFLOJF produced longer mean response

times. However, the performance differences were very small, as can be seen in Figures 3.19 and 3.20,

and they were statistically insignificant. Increasing the upper bound of the execution times interval in­

creased the performance advantage of MFSTDF and MFSHJF, but the improvement remained statisti­

cally insignificant when the bound was increased to 1000. MFFF is a robust policy in that its perform­

ance is not expected to change significantly if smaller, shorter, longer, or jobs with smaller total proc­

essing demands are given priority.

Figure 3.19; Mean response time as a function of the load parameter, MISP speedup, uniform
execution time and size distributions

455

MFFF
MFSTDF
MFSHJF
MFLOJF

0.0001 0.2 0.4 0.6 O.S

Load Parameter

1.2

www.manaraa.com

76

70 -r

M
e
a
n

R
e
s

P
0
n
s
e

T
1
m
e

0.0001 0.2

MFFF

MFSTDF

MFSHJF

MFLOJF

0.4 0.6 0.8

Load Parameter

1.2

Figure 3.20: Mean response time as a function of the load parameter, MISP speedup,
exponential execution time and size distributions

3.5 Conclusions

Adaptive folding of parallel jobs can substantially improve the performance of parallel sys­

tems. The efiBciency of a parallel application is normally a decreasing flmction of the number of proc­

essors allocated, and it is often worse than that predicted by an MISP speedup curve, especially when

the physical parallelism exploited is high. For typical applications, and based on the fairness curves

and mean response times, MFFF, when FFmax~flmca^policy studied in this chapter.

A fixed maximum folding factor can produce good performance under specific system loads

and workload characteristics. However, it can degrade performance if it is too small or too large.

MFFF is a robust policy. It resulted in good performance across the system loads and workload charac­

teristics considered in this study, and its performance did not improve significantly when shorter appli­

cations and applications with smaller total processing demands were given priority.

www.manaraa.com

77

MFFF is superior to FF, FF+FIFO, and the remaining policies studied in Chapter 2, including

when linear speedup is assumed. This conclusion contradicts the assertion in [Sevcik 89] that no fold­

ing is optimal under linear speedup (constant degree of parallelism in Sevcik's study). The benefits of

folding can be substantial under linear speedup (e.g.. Figures 3.4) because it can reduce processor

fiagmentation considerably.

A fiindamental problem with static space sharing is folding fragmentation, which exists be­

cause released processors are not allocated to folded jobs. Dynamic space sharing solves this problem.

However, it induces ^plication reconfiguration overhead. MFFF is compared to dynamic space shar­

ing policies in the next ch^ter.

www.manaraa.com

78

4 DYNAMIC SPACE SHARING POLICIES

In this chapter, several program-based topology-independent dynamic space sharing policies

are studied and compared. The results of a detailed simulation study of their performance show that the

policies that reduce waiting times by allowing more ^plications to execute simultaneously are superior

to those that reduce execution times by restricting the number of active applications. This outcome is

due to the significant increase in efficiency that typically results when programs execute on fewer proc­

essors. When the applications have linear speedup, the policies that restrict the number of active appli­

cations are superior. Also, the results show that there is a tradeofif between mean response times and

fairness. Giving priority to jobs with small processor requests can reduce the overall mean response

times, but it increases the expected response times of large jobs.

4.1 Introduction

Dynamic space sharing differs from static space sharing in that the number of processors allo­

cated to ^plications can vary during their execution. However, applications are allocated distinct

processor subsets, as in static space sharing. The dynamic strategy avoids the folding fiagmentation

problem that exists under static space sharing, and it can reduce program idle times due to insufficient

parallelism. Folding fiagmentation is avoided because released processors can be allocated to applica­

tions executing on less than the number of processors requested. To reduce its idle times an application

may, for example, request processors as it needs them and release those it no longer uses. A major dis­

advantage of dynamic spsice sharing is the overhead induced by processor releases and reallocations,

specifically context switches, cache reloads, and data migration in distributed-memory and NUMA

systems. This oveiiiead can offset the benefits of dynamic space sharing [Zahoijan 90],

Dynamic space sharing policies produced shorter mean response times than traditional process-

www.manaraa.com

79

based time-multiplexing schemes in several experimental and simulation studies of job scheduling in

UMA [Tucker 89][McCann 93] and NUMA systems [Maricatos 93]. The context switches associated

with time-multiplexing are avoided, and significant reductions in cache reloads and synchronization

delays can result. For example, a process may spend a long time in the suspended state, especially un­

der high system loads, and impede the progress of processes that interact with it under traditional time-

multiplexing schemes, which schedule processes independently of their interactions.

To address this synchronization problem, Ousterhout [Ousterhout 82] proposed round-robin

coscheduling. Under this scheme, cooperating processes are assigned to distinct processors, and they

are dispatched and preempted together so as to avoid waiting for suspended processes. However, co-

scheduling incurs the overhead associated with time-multiplexing, and system utilization can be low

because a subset of processors idles when it can not execute a complete set of cooperating processes

during a time-slice. Dynamic space sharing ou^erformed round-robin coscheduling in simulation

[Zahoijan 90]PLeutenegger 90] and experimental [Markatos 93] studies.

The fundamental issue in space sharing is determining the number of processors to allocate to

competing jobs. Allocating a small number of processors typically increases program efBciency and

decreases the waiting times, but it normally increases the execution times. Consequently, there may be

a tradeoff between reducing the running times of individual ^pUcations and reducing the overall mean

response time.

A few dynamic space sharing schemes have been proposed and evaluated. The number of

processes is dynamically controlled so that it does not exceed the number of processors and a processor

is dedicated to the execution of a single process in the process control technique proposed for shared-

memory machines [Tucker 89], Time-multiplexing is avoided. In the prototype implemented on Encore

Multimax shared-memory multiprocessor, the processors are divided evenly among the jobs under the

constraint that no application is allocated more than its processor demand. In comparison to perform­

ance imder traditional process-based round-robin scheduling, significant reductions in response times

www.manaraa.com

go

were obtained. For some applications, the improvement was by more than a &ctor of two.

McCann, et ai, [McCann 93] compared three scheduling policies on a Sequent Symmetry

shared-memory multiprocessor. They are called Round-Robin job (RRjob), Equipartition, and Dy­

namic. In RRjob, originally proposed in [Leutenegger 90], a job is assigned n processors for a time

interval t=kln when its turn arrives, where n is the job's maximum process parallelism and k a constant.

The unassigned processors are given to the job whose turn is next (the maximum process parallelism of

the ^plications exceeds P/2 in the study). In Equipartition, the target system is subdivided evenly

among the jobs present in the system, allocation is independent of instantaneous concurrency, and a

job's processor demand equals its maximum process parallelism. Dynamic differs from Equipartition

in that allocation depends on the actual degree of concurrency. Applications request processors as their

process parallelism increases, and release those they no longer need. Consequently, Dynamic typically

induces more processor releases and reallocations than Equipartition. An issue with equipartitioning,

used in Dynamic and Equipartition, is that small jobs are &vored. Moreover, as smaller jobs typically

receive a relatively larger fraction of their processor request, their execution efiGciency may be low.

RRjob produced the longest response times as it does not take advantage of the increase in ef­

ficiency that typically results from folding, and because progress may be impeded when only a proper

subset of a job's processes are active. Dynamic outperformed Equipartition by about 10% for the

plications considered. The decrease in job idle times it produced was greater than the additional over­

head associated with the larger number of processor releases and reallocations it normally induces.

In another dynamic policy, proposed by Zahoijan and McCann [Zahoijan 90], allocation varies

with job parallelism. If an allocation request cannot be satisfied, it waits in a FIFO queue. Pending re­

quests are serviced on FCFS basis. However, a new job is given priority for the allocation of its first

processor. If there are no free processors, one is preempted from a job that is allocated two or more

processors. An application may receive an un&ir share of processors under this scheme. For example,

a new job may be allocated a single processor while an earlier arrival is allocated many more.

www.manaraa.com

81

4.1.1 Problem Statement and Goals

Equipartitioning has been widely evaluated as a dynamic space sharing implementation tech­

nique [Tucker 89][Leutenegger 90][McCann 93][Maricatos 93]. However, there are two issues with it.

First, it &vors smaller jobs because they can receive a larger fraction of the number of processors they

requested. Second, the execution e£Gciency of these jobs may be low because they are not folded

enough. The overall goal of this study of dynamic space sharing is to evaluate and compare a wide

range of dynamic policies that diSer in the folding method and in the criteria used in selecting which

applications to service. The specific goals are to:

• Investigate the tradeoff between reducing the execution times of individual ^plications

and reducing the overall mean response time. The effects on performance of giving priority

to smaller and shorter jobs are also investigated.

• Study the influence of the increase in efiBciency that results from folding on the design of

dynamic space sharing policies.

• Compare dynamic space sharing policies to the Multifolding First Fit (MFFF) static space

sharing job scheduling scheme. MFFF outperformed several other static policies, as can be

seen in Chapter 3.

4.2 Workload Model

The results presented in Chapters 2 and 3 show that the increase in efficiency that typically

results from folding has a strong influence on the performance of static space sharing policies. To

evaluate the influence of this factor under dynamic space sharing, three workload classes are used. In

the first, the jobs have linear speedup. In the second, they have speedup curves that correspond to a

large sequence of consecutive sequential and parallel phases (Figure 4.1). The fiaction of sequential

code is assumed constant for the lifetime of the job. The efiBciency values when the jobs are allocated

the maximum mmiber of processors they can use, «, is assumed to be distributed uniformly over

www.manaraa.com

82

Figure 4.1: sequence of parallel and sequential phases

[0.4,0.9]. The corresponding speedup curve is monotonically increasing, and is denoted by MISP.

Many applications have a structure similar to that shown in Figure 4.1. For example, many

parallel jobs consist of processes that iterate over a subset of the input data between successive serial

phases. Moreover, MISP is a good approximation to the speedup of many jobs when the number of

processors used is not too large, including the jobs specified below.

The third class of jobs consists of thirty applications whose execution times, efficiency

curves, and processor demands are specified or can be derived easily from Table 4.1. The first ten

applications use a maximum of 16 processors and have the characteristics defined in the table. The

column ^(p) contains the efficiency of the applications when they execute on p processors. Twenty

additional job characteristics are derived from Table 4.1 by doubling and quadrupling the problem

sizes and number of processors, and assuming the applications scale up. For example, the applica­

tions 11 and 21 in Table 4.2 are derived from application 1 in Table 4.1. The job characteristics in

Table 4.1 were derived from performance data in [Naik 93a] and [Bailey 92]. Where the performance

data is not provided for a value of p, linear interpolation of the efficiency curve is used to derive the

missing execution efficiency.

It is assumed that programs are capable of reconfiguring themselves to run on the processors

they are allocated. Threads packages augmented with functions that support application reconfigura­

tion were used in implementing dynamic space sharing policies in shared-memory multiprocessors

[Tucker 89][McCann 93]. Schemes that support explicit data migration were proposed for NUMAs

www.manaraa.com

83

Table 4.1: Execution profiles of specific ^plications

Application ^1) ^2) ^8) ^16)

1 158 0.967 0.897 0.789 0.559

2 185 0.977 0.928 0.913 0.884

3 357 0.977 0.928 0.882 0.786

4 1916 0.984 0.943 0.877 0.768

5 1553 0.982 0.948 0.903 0.844

6 657 0.949 0.842 0.720 0.604

7 2532 0.952 0.892 0.787 0.665

g 6141 0.986 0.966 0.929 0.882

9 9740 0.960 0.915 0.853 0.753

10 28794 0.979 0.935 0.880 0.820

Table 4.2: Sample of derived execution profiles

Application ^1) ^4) 4(8) «16) ^32)

11 315 0.967 0.897 0.789 0.559

Application ^(1) 00

K16) ^32) K64)

21 630 0.967 0.897 0.789 0.559

www.manaraa.com

84

[Markatos 93] and distributed-memory systems [Naik 93a].

4.3 Allocation Policies

The dynamic allocation schemes defined below and variants of the second policy are studied. It

is assumed that a new job requests a number, n, of processors upon arrival. The target system consists

of P identical processors, and allocation is topology-independent.

Dynamic Equipartitioning (DEQP): The processors are divided evenly among the applications in the

system. They each receive min(n,int(P/Ai)) processors, where Mis their number. Load levels that result

in more than P applications in the system are not considered. The applications are sorted in a queue in

the non-decreasing order of their processor demands, and any remaining processors are allocated as

follows; The queue is scanned, and a job that is allocated fewer than the number of processors it re­

quested is allocated one more. This procedure is repeated if there are free processors and unsatisfied

allocation requests at the end of the scan.

Dynamic Proportional Allocation (DPROP): Each application is allocated max(l,int(n^) proces­

sors. The folding factor is equal to rrax.(\J'IP), where T is the cunent total processor demand. The

remaining processors are allocated to the earliest arrivals, one to each, under the constraint that an

^plication is not allocated more than its processor demand.

Dynamic FCFS (DFCFS): A new application is allocated niin(«,i<T') processors, where FP is the

number of free processors. It waits if FP=0. When processors are released, the earliest arrival that is

allocated less than its processor demand receives amin-pJFP) additional processors, where p is that

job's current allocation. This procedure is repeated until all requests are satisfied or FP=Q.

Dynamic Smallest Job First (DSMJF): The jobs in the system are sorted in the non-decreasing order

of their processor demands. A job waits if FP=0, otherwise it is allocated vcm(nJFP) processors. When

an application terminates, the smallest job that is allocated less than its processor demand receives

min(/i-/7,fP) additional processors. This procedure is repeated until all requests are satisfied or FP=0.

www.manaraa.com

85

Applications are allocated more processors on average under DFCFS and DSMJF. DPROP

and DEQP reduce waiting times by executing more applications simultaneously, and they take more

advantage of the efficiency improvement associated with folding. For example, as many as /* jobs can

be executing simultaneously under DEQP. The goal of DPROP is to improve the &imess characteris­

tics of DEQP by folding ^plications evenly. Note that applications that have small processor requests

may not be folded under DEQP.

4.4 Results

The scheduling effectiveness of the dynamic policies is equal to one because they avoid proces­

sor fragmentation. Their performance is compared using mean response times and fairness curves.

4.4.1 Simulation Parameters

Load levels that result in more than P jobs in the system are not considered. During each run,

the simulator generates 5500 jobs. The performance data of the first 500 jobs is discarded so as to ig­

nore startup effects. The number of runs is such that the mean response times obtained are within 5%

of the true mean with 95% confidence.

In some experiments, the applications are selected randomly fi'om the set of thirty applications

specified in Section 4.2. In these experiments, the mean processor demand N is 32, and the mean exe­

cution time when the ^plications are allocated their processor demand, Tg, is 407.5 time imits. In the

remaining experiments, the processor demands are uniformly distributed over [2,7^64], and two exe­

cution time distributions are used. The distributions are the uniform over [1,360], and the truncated

exponential with a mean of 60 and the values outside the interval [1,1000] discarded. As most applica­

tions reported in the literature take more than a few seconds to complete, an appropriate time unit is 5

to 20 seconds.

When the number of processors allocated to an application changes as a result of a job arrival

www.manaraa.com

86

or departure, its execution time on the new number of processors is increased by C time units. The

sources of overhead associated with allocation changes include context switches, extra cache misses,

and data migration in NUMA multiprocessors. As this overiiead is application and system-dependent, a

range of overiiead values are considered, as in [Zahoijan 90], Data in [Zahoijan 90] and [Markatos 93]

indicate that values of C that do not exceed 1 are of most interest. Note that C-l represents a high

overhead of a few seconds.

4.4.2 Mean Response Times and Fairness

Based on mean response times, the ordering of the policies from best to worst under the uni­

form execution times distribution, C<1, and linear speedup is: DSMJF, DFCFS, DEQP, and DPROP

(e.g.. Figure 4.2). The ordering under the exponential execution times distribution and linear speedup

is: DSMJF, DEQP, DFCFS, and DPROP (e.g.. Figure 4.3). DPROP outperformed DFCFS slightly

under this workload model and C=0, but it performed slightly worse than DFCFS when C=1 because

of the larger number of allocation changes it produces.

M S30

T 430
R

n

s
e

® m 380

e

e

i

330

480

280

230

180

DFCFS

DSMJF

DPROP

DEQP

0.0001 0.2 0.4

Load Parameter

0.6 0.8

Figure 4.2: Linear speedup, C=0, uniform size and execution time distributions

www.manaraa.com

87

260 T

240 ••
DFCFS.
DPROP

DSMJF

DEQP

220 • •

200 ••

T 180 • •

i
m
e

160

140

120 • •

100 • •

80

0.0001 0.2 0.4 0.6 0.8

Load Parameter

Figure 4.3; Linear speedup, C=l, uniform size distribution, exponential execution time distribution

The performance advantage of DSMJF over DEQP under linear speedup increases with C due

to the significantly higher number of allocation changes DEQP results in (e.g., Table 4.3). For exam­

ple, this performance advantage is less than 5% under the exponential execution times distribution,

C=0, and Z=0.8, but it is approximately 15% under the same woridoad model and L when C=1 (Figure

4.3). However, the increase is less significant under the uniform execution times distribution. Under

this distribution, the advantage of DSMJF over DEQP rises from 22% to 27% when C increases fi"om

Oto 1 andL=0.8.

Table 4.3; Relative number of application allocation changes, linear speedup,
uniform size and execution time distribution

Dynamic Policy 1=0.4 L=0.6 L=0.i

DFCFS 1.00 1.00 1.00

DSMJF 1.00 1.03 1.02

DPROP 1.50 1.51 1.28

DEQP 1.64 1.68 1.44

www.manaraa.com

gg

Under the remaining workload models, where speedup is sublinear, the ordering of the mean

response times of the dynamic policies firom best to worst is: DEQP, DPROP, DSMJF, and DFCFS

(e.g.. Figures 4.4-4.8). This different ordering results from the efSciency advantage of folding. The

ratio of the mean response times of DPROP and DEQP, /?7'(DPROP)//?7'(DEQP), increases with L,

but it remains small. For example, it is 106 to 108% under L=\ in Figures 4.4-4.7 and 112% under

Z=0.8 in Figure 4.8. Because DEQP produces more allocation changes than DPROP, its relative ad­

vantage decreases slightly when C increased.

DFCFS and DSMJF performed much worse than DEQP. For example, when Z,=0.8, the ratio

/{7(DSMJF)/7?7XDEQP) is about 128% under the uniform execution times distribution, 150% under

the exponential execution times distribution, and 215% when the applications are those defined in Ta­

bles 4.1 and 4.2. These ratios decreased slightly when C increased from 0 to 1.

—•—DFCFS

—•—DSMJF

—±— DPROP

—X— DEQP

MFFF

0.0001 0.2 0.4 0.6 0.8 1

Load Parameter

Figure 4.4; MISP speedup, C=0, uniform execution time and size distributions

www.manaraa.com

89

DFCFS

DSMJF

DPROP

0.0001 0.4 0.6

Load Parameter

Figure 4.5: MISP speedup, C=l, unifonn execution time and size distributions

-•—DFCFS

-•—DSMJF

-A— DPROP

DEQP

Load Parameter

Figure 4.6: MISP speedup, C=0, uniform size distribution, exponential execution time distribution

www.manaraa.com

90

200 T

180 --

160

M
e
a
n

R
e
s 140

P
0
n
s
e

T
1
m
e

DFCFS

DSMJF

DPROP

DEQP

MFFF

0.0001

120 ••

100 -•

0.4 0.6

Load Parameter

Figure 4.7: NflSP speedup, C=l, uniform size distribution, exponential execution time distribution

M 850

DSMJF

DPROP

0.0001 0.2 0.4

Load Parameter

0.6 0.8

Figure 4.8: Woridoad defined in Tables 4.1 and 4.2, C=0

www.manaraa.com

91

As speedup is seldom linear and the efficiency of parallel ^plications typically increases sig­

nificantly when they are allocated fewer processors, the policies that fold more ^plications and reduce

the waiting times, DEQP and DPROP, are expected to be superior to DFCFS and DSMJF in practice.

DPROP and DEQP outperformed the static space sharing policy MFFF under the uniform and

exponential execution times distributions defined earlier, including when C=1 (see Figures 4.4-4.7).

Under these distributions, Tg is much larger than C, and ^plication reconfigurations occur infre­

quently enough for DPROP and DEQP to be superior to MFFF. However, MFFF can outperform these

policies under higher reconfiguration rates and relative overhead costs, as can be seen in Figure 4.9.

Here, the execution times are distributed unifonnly over the interval [1,10]. The job arrival rates are

approximately 35 times larger than those in Figures 4.4 and 4.5, and the rates of application reconfigu­

rations are, accordingly, considerably higher.

m

35

M

T

n
s

a 30
n

P
o 20

e 15

e
s

e

e

20

10

5

DPROP

DEQP

MFFF

0.0001 0.2 0.4 0.6 0.8

Load Parameter

1.2

Figure 4.9: MISP speedup, C=0.5, uniform execution times distribution over [1,10], uniform sizes
distribution

www.manaraa.com

92

A disadvantage of DEQP is that it can discriminate against jobs with large processor demands

much more than DPROP under high system loads, as can be seen in Figures 4.10 and 4.11. These fig­

ures display the feimess curves of DEQP and DPROP under Z,=0.6 and L=1.0. The mean response

times of large jobs are longer under DEQP, however jobs with small to medium processor requests per­

form better than under DPROP. As allocation in DEQP is based on the even division of processors

among jobs, smaller applications receive, on average, a larger fraction of the number of processors they

requested. In choosing between DPROP and DEQP, there is tradeoff between overall mean response

times and l&imess. DPROP has better &imess characteristics, but its overall mean response times are

longer.

m

M

T

R

n

e

P
0

e
a

s
e

n

e
s

DPROP-L=0.6

DEQP.L=0.6

DPROP-L=1.0

DEQP.L=1.0

2 8 L6 24 32 40 48 56 64

n

Figure 4.10: Mean response time as a function of job processor demand, C=0,1=0.6
and 1.0, uniform size and execution time distributions

www.manaraa.com

93

DPROP-L=0.6

DEQP-L=0.6

DPROP-L=1.0

DEQP-L=1.0

Figure 4.11; Mean response time as a function of job processor demand, C=0, Z,=0.6 and
Z,=1.0, imifoim size distribution, exponential execution time distribution

4.5 DPROP Variants

To study the influence of giving priority to smaller and shorter jobs, two variants of DPROP

are considered. In the first variant, denoted by DPROP-SM, smaller jobs are given priority. Let rij de­

note the number of processors requested by job j, the job's allocation under DPROP-SM is based on a

new processor demand, ndj, computed by ndj=n/{\+x*njlP), where x is a priority parameter greater

than zero. When * increases, smaller jobs receive a larger fiaction of tiieir processor demands. Alloca­

tion is as follows:

1) Compute ndj for all jobs in the system

2) Compute 5'=Sj ndj

3) Calculate the folding fector fl=SIP

4) If#<lthen#=l

5) For all jobs: allocate max(l,«4/^ processors to job j

6) Any remaining processors are allocated as in DPROP

In the second DPROP variant, denoted by DPROP-SH, priority is given to shorter jobs. It is

www.manaraa.com

94

assumed that applications can be classified a priori as normal or long, and allocation is as follows:

1) Allocate 1 processor to each job in the system

2) For all jobs do: If job j is long then ndj={ nf-\)lx else ndj= nj-l (x is a priority parame­

ter greater than zero)

3) Compute 5'=Sj ndj

4) Calculate the folding &ctor J^^IFP {FP is the number of free processors)

5) If^<lthen^l

6) For all jobs: allocate voX.(ndJffi additional processors to job j

7) Any remaining processors are allocated as in DPROP

DPROP-SM/m and DPROP-SH/m refer to DPROP-SM and DPROP-SH when x==m. A wide

range of priority parameters (i.e., values of x) were considered. DPROP-SM/2 outperformed DPROP,

but it produced slightly longer mean response times than DEQP (e.g.. Figures 4.12-14). An advantage

of DPROP-SM/2 over DEQP is that it discriminates against large jobs less, as can be seen in Figure

380

DEQP

DPROP

DPROP-SM/2

360

M 340
e
a 320
n

_ 300
R !
e ' 280

m m
280

s
p ® 260
o

240

s
220

200

180

0.0001 0.2 0.4 0.6

Load Parameter

0.8

Figure 4.12: MISP speedup, uniform size and execution time distributions

www.manaraa.com

95

140

M
130

DEQP

DPROP

DPROP-SM/2

120 ••

110

100

m

0.0001 1 0.2 0.4 0.6 0.8

Load Parameter

Figure 4.13; MISP speedup, uniform size distribution, exponential execution time distribution

900

M 850

DPROP

DEQP

DPROP-SM/2

DPROP-SH/4

800 --

750
R

700

650 --

600

550

T
500 --

m
450

400

0.0001 0.2 0.4 0.8 0.6

Load Parameter

Figure 4.14; Workload defined in Tables 4.1 and 4.2

www.manaraa.com

96

4.15. Increasing x beyond 2 decreased the overall mean response times slightly, but it also resulted in a

small lengthening of the mean turnaround times of large jobs (e.g.. Figure 4.15).

In the simulation experiments of DPROP-SH under the third workload class, applications 9,

10, 19,20,29, and 30 are considered long. A job is considered long if its execution time on the number

of processors it requested is greater than the mean i(n) (i.e., Fg) in the experiments that use the uniform

and exponential execution times distributions.

The biggest improvement in performance obtained with DPROP-SH was achieved under the

third workload class. Under this workload, the best DPROP-SH mean response times are almost identi­

cal to those of DEQP, and they are sli^tly better than those of DPROP-SM/2. The best results were

obtained with large values of x (*>16). As x was increased beyond 1, the response times decreased

rapidly initially, then the rate of decrease slowed down significantly. A problem with large values of x

is that they degrade the performance of long jobs. The performance of DPROP-SH under an interme­

DEQP

DPROP

DPROP-SM/2

DPROP.SM/4

170 •— f 1 1 i 1 1 1 1

2 8 16 24 32 40 48 56 64

n

Figure 4.15; Mean response time as a fimction of job processor demand, 1=1.0,
uniform size and execution time distributions

www.manaraa.com

97

diate value of x (x=4) is compared to that of DEQP and DPROP-SM/2 in Figure 4.14, where it is

shown that DPROP-SH/4 is slightly better than DPROP-SM/2, but worse than DEQP. A problem with

DPROP-SH is that it is less practical than the other policies as it is difficult to determine or estimate

the execution times of jobs in advance of their execution. Moreover, DPROP-SH does not offer signifi­

cant advantage over DEQP and DPROP-SM/2.

4.6 Conclusions

When the overiiead of application reconfigurations is small, dynamic space sharing is, as ex­

pected, superior to static space sharing. However, when the overhead is high, static space sharing can

outperform dynamic space sharing significantly, as can be seen in Figure 4.9. Dynamic space sharing

is expected to be a poor strategy when paralleUsm is fine-grained and allocation changes occur fi-e-

quently (i.e., CITg is large).

As the efiBciency of parallel applications typically increases significantly when the number of

allocated processors decreases, DEQP, and DPROP and its variants are expected to outperform

DFCFS and DSMJF in practice. Overall, DEQP and DPROP-SM/2 are the best dynamic policies

considered in this study. DEQP produced slightly shorter mean response times than DPROP-SM/2, but

it discriminated against large jobs significantly more. Based on the mean response time performance

parameter alone, DEQP, which has commonly been used in implementing dynamic space sharing, is the

best dynamic policy considered in this study.

Although DPROP-SH can improve on the performance of DPROP, the improvement is not

such that DPROP-SH is significantly better than DEQP or DPROP-SM/2. Moreover, DPROP-SH is

less practical as it requires that the execution times of ^plications be estimated or known a priori.

A reason why DEQP, DPROP might not be superior to DFCFS and DSMJF is that they can

result in a large number of implications executing simultaneously. Depending on memory access pat­

terns and the bandwidth of the memory subsystem, the efiBciency of jobs may suffer, and a policy that

www.manaraa.com

98

limits their number may be superior. A natural extension to this woric would be to study of the effect of

interconnection contention on the performance of dynamic space sharing policies.

www.manaraa.com

99

5 CONCLUSIONS AND FUTURE WORK

Alternative topology-independent program-based space sharing policies that differ in the fold­

ing method and the job selection criteria are compared using extensive simulation in Chapters 2, 3, and

4. The results of this comparison lead to the following main conclusions;

• Traditional allocation algorithms (e.g., first-come-first-served and first-fit), which do not sup­

port ^plication folding, can produce high processor fi-agmentation under medium to high sys­

tem loads even when allocation is topology-independent. As a result, their mean response times

under general woildoad models start increasing sharply under load levels significantly smaller

than one, as seen in Chapter 2. Free processors remain idle if their number is smaller than the

processor demands of the waiting applications, and the efiBciency improvement that typically

results when ^plications execute on fewer processors is not exploited.

• In implementing the static space sharing processor allocation strategy, adaptive folding is su­

perior to no folding and unconstrained folding. The major disadvantage of unconstrained fold-

ing is the high folding fi^gmentation it can produce under most system loads. Because released

processors are not allocated to folded ^plications in static space sharing, a large number of

processors may remain idle while parallel jobs are executing on fewer than their processor de­

mands. This problem is especially severe under medium loads when many applications are

folded and the waiting queue is short. The advantage of imconstrained folding over no folding

is that it exploits the efficiency benefit of allocation reduction. By increasing the maximum

factor by which ^plications are allowed to be folded with the load, the adaptive approach pre­

vents them fi-om running on too few processors under moderate loads, when released proces­

sors are likely to remain idle for a long time. Ad^tive folding produced higher and more stable

scheduling effectiveness and shorter mean response times.

www.manaraa.com

100

• The adaptive muitifolding static policy MFFF, wdiich can fold multiple applications when a job

terminates, is robust and superior to policies that fold at most one application upon a job

completion. It is robust in that no significant mean response time improvement was obtained

when priority was given to applications with small processor demands or short execution

times. Its advantage is that it exploits the efficiency benefit of folding more than the other

policies.

• As dynamic space sharing avoids folding firagmentation, it is superior to static space sharing

provided the overhead of ^plication reconfigurations does not offset the improvement in per­

formance that results from the fi-agmentation reduction. Experimental data obtained on UMA

and NUMA systems indicates that this overhead is not excessive when parallelism is coarse­

grained and allocation changes are infi'equent [Zahoijan 90][McCann 93][Markatos 93].

• Dynamic space sharing policies that reduce waiting times by executing a large number of ap­

plications simultaneously (DEQP, DPROP, and DPROP-SM) are superior to policies that

limit the number of active applications and reduce execution times (DFCFS and DSMJF). Dy­

namic schemes based on the assumption that applications are classified a priori as short or

long did not result in significant improvement over DEQP and DPROP-SM.

An obvious extension to this work is to implement the most promising policies and compare

their performance. As topology-based allocation can improve interconnection performance significantly

in distributed-memory systems, the tradeoff between processor fi^gmentation and exploiting locality in

these systems needs investigation. In particular, folding topology-based schemes should be studied and

compared to folding topology-independent and no folding topology-based schemes.

An issue with the static and dynamic policies that resulted in the best performance in this

study is that they can execute a large number of ^plications concurrently. Depending on parallelism

granularity and interconnection bandwidth, the efficiency of jobs may suffer because of increased con­

tention for the interconnection subsystem. Another possible extension to this woric is to study the effect

www.manaraa.com

101

of memory subsystem contention on the performance of policies that execute many ^plications simul­

taneously.

www.manaraa.com

102

REFERENCES

[Abraham 92] Abraham, S., and Padmanabhan, K. "Effect of data access delays and system partition-
ability on the dynamic performance of a shared memory multiprocessor". Proceedings of the Su-
percomputing '92 Conference, pp. 674-682, November 1992.

[Ahmad 94] Ahmad, I., Ghafoor, A., and Fox G. C. "Hierarchical scheduling of dynamic parallel com­
putations on hypercube multicomputers". Journal of Parallel and Distributed Computing, vol. 20,
pp. 317-329, March 1994.

[Anderson 92] Anderson, T., Bershad, B., Lazowska, E., and Levy, H. "Scheduler activations; effec­
tive kernel support for user-level management of parallelism". ACM Transactions on Computer
Systems, vol. 10, pp. 53-79, February 1992.

[Bailey 92] Bailey, D., Barszcz, E., Dagun, L., and Simon, H. "NAS parallel benchmark results". Pro­
ceedings of the Supercomputing '92 Conference, pp. 386-393, November 1992.

[Baker 80] Baker, B., Cofi&nan, E., and Rivest, R. "Orthogonal packings in two dimensions". SUM J.
Comput., vol. 9, pp. 846-855, November 1980.

[Beckerle 92] Beckerle, M. "An overview of the START(*T) computer system". Motorola technical
report MCRC-TR-30, revision 2, Motorola Cambridge Research Center, Cambridge, MA, October
1992.

[Chandra 93] Chandra, R., Gupta, A., and Hennessy, J. "Data locality and load balancing in COOL".
Proceedings of 4th ACM Symposium on PPoPP, pp. 249-259, May 1993.

[Cofi&nan 80] Coffinan, E., Garey, M., Johnson, D., and Taijan, R. "Performance bounds for level-
oriented two-dimensional packing algorithms". SIAM J. Comput., vol. 9, pp. 808-826, November
1980.

[Cofi&nan 91] Cofifinan, E., and Lueker, G. Probabilistic Analysis of Packing and Partitioning Algo­
rithms. John Wiley and Sons, New York, 1991.

[Eigenmann 91] Eigenmann, R., Hoeflinger, J., Jaxon, G., and Padua, D. "Cedar Fortran and its re­
structuring compiler". Advances in Languages and Compilers for Parallel Processing, editors A.
Nicolau etai. The MIT Press, Cambridge, MA, pp. 1-23, 1991.

[Feitelson 90] Feitelson, D., and Rudolph, L. "Distributed hierarchical control for parallel processing".
IEEE Computer, vol. 23, pp. 65-77, May 1990.

[Flatt 89] Flatt, H., and Kennedy, K. "Performance of parallel processors". Parallel Computing, vol.
12, pp. 1-20, 1989.

www.manaraa.com

103

[Ghosal 91] Ghosal, D., Serazzi, G., Tripathi, S. "The processor working set and its use in scheduling
multiprocessor systems". IEEE Transactions on Software Engineering, vol. 17, pp. 443-453, May
1991.

[Crupta 91] Gupta, A., Tucker, A., and Urushibara, S. "The impact of operating system scheduling
policies and synchronization methods on the performance of computer systems". Proceedmgs of the
1991 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pp.
120-132, May 1991.

[Gupta 93] Gupta, A., and Kumar, V. "Performance properties of large scale parallel systems". Jour­
nal of Parallel and Distributed Computing, vol. 19, pp. 234-244, 1993.

[Gusta&on 88] Gusta&on, J. "Reevaluating Amdahl's law". Communications of the ACM, vol. 31, pp.
532-533, May 1988.

[Hicks 93] Hicks, J., Chiou, D., Seong, B., and Arvind "Performance studies of Id on the Monsoon
dataflow system". Journal of Parallel and Distributed Computing, vol. 18, pp. 273-300, 1993.

[Himandani 92] Himandani, S., Kennedy, K., and Tseng, C.-W. "Compiling Fortran D for MIMD
distribute-memory machines". Communications of the ACM, vol. 35, pp. 66-80, August 1992.

[Kiishnamurti 92] Krishnamurti, R., and Ma, E. "An approximation algorithm for scheduling tasks on
varying partition sizes in partitionable multiprocessor systems". IEEE Transactions on Comput­
ers, vol. 41, pp. 1572-1579, December 1992.

[Lenoski 92] Lenoski, D., Laudon, J., Gharachorolo, K., Weber, W.-D., Gupta, A., Hennessy, J., Hor­
owitz, M., and Lam, M. "The Stanford DASH multiprocessor". IEEE Computer, pp. 62-79,
March 1992.

[Leutenegger 90] Leutenegger, S., and Vernon, M. "The performance of multiprogrammed multiproc­
essor scheduling policies". Proceedings of the 1990 ACM SIGMETRICS Conference on Meas­
urement and Modeling of Computer Systems, pp. 226-236, May 1990.

[Li 91] Li, K., and Cheng, K.-H. "A two-dimensional buddy system for dynamic resource allocation in
a partitionable mesh connected system". Journal of Parallel and Distributed Computing, vol. 12,
pp. 79-83, 1991.

[Liu 94] Liu, W., Lo, V., Windisch, K., and Nitzberg, B. "Non-contiguous processor allocation algo­
rithms for distributed memory multicomputers". Proceedings of the Supercomputing '94 Confer­
ence, pp. 227-236, November 1994.

[Majumdar 88] Majumdar, S., Eager, D., and Bunt, R. "Scheduling in multiprogrammed parallel sys­
tems". Proceedings of the 1988 ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, pp. 104-114, May 1988.

www.manaraa.com

104

[Maricatos 92a] Maricatos, E. and LeBlanc, T. "Load balancing vs. locality management in shared-
memory multiprocessors". Proceedings of the 1992 International Conference on Parallel Process­
ing, pp. 1-258 to 1-267, 1992.

[Maricatos 92b] Markatos, E. and LeBlanc, T. "Using processor afiSnity in loop scheduling on shared-
memory multiprocessors". Proceedings of the Supercomputing *92 Conference, pp. 104-113, No­
vember 1992.

[Maricatos 93] Markatos, E. "Scheduling for locality in shared-memoiy multiprocessors". Ph.D. disser­
tation, University of Rochester, Rochester, New York, 1993.

[McCann 93] McCann, C., Vaswani, R., and Zahoijan, J. "A Dynamic processor allocation policy for
multiprogrammed shared-memory multiprocessors". ACM Transactions on Computer Systems,
vol. 11, pp. 146-178, May 1993.

[Naik 93a] Naik, V., Setia, S., and Squillante, M. "Performance analysis of job scheduling policies in
parallel supercomputing environments". Proceedings of the Supercomputing '93 Conference, pp.
824-833, November 1993.

[Naik 93b] Naik, V., Setia, S., and Squillante, M. "Scheduling of large scientific applications on dis­
tributed memory multiprocessor systems". Proceedings of the 6th SIAM Conference on Parallel
Processing for Scientific Computing, pp. 913-922, 1993.

[Ousterhout 82] Ousterhout, J. "Scheduling techniques for concurrent systems". 3rd International Con­
ference on Distributed Computing Systems, pp. 22-30, October 1982.

[Pasquale 91] Pasquale, J., Bittel, B., and Kraiman, D. "A static and dynamic woridoad characteriza­
tion study of die San Diego supercomputer center Cray X-MP". Proceedings of the 1991 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pp. 218-219,
May 1991.

[Seitz 90] Seitz, C. "Multicomputers". Developments in Concurrency and Communication. Addison-
Wesley, Reading, MA, pp. 131-200, 1990.

[Setia 93] Setia, S., Squillante, M., and Tripathi, S. "Processor scheduling on multiprogrammed, dis-
tributed-memory parallel computers". Proceedings of the 1993 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, pp. 158-170, May 1993.

[Setia 94] Setia, S., Squillante, M., and Tripathi, S. "Analysis of pr(x:essor allegation in multipro­
grammed, distributed-memory parallel prcxxssing systems". IEEE Transactions on Parallel and
Distributed Systems, vol. 5, pp. 401-420, April 1994.

[Sevcik 89] Sevcik, K. C. "Characterizations of parallelism in ^plications and their use in schedul­
ing". Performance Evaluation Review, vol. 17, pp. 171-180, May 1989.

www.manaraa.com

105

[Squillante 91] Squillante, M. and Randolph, D. "Analysis of task migration in shared-memory multi­
processor scheduling". Proceedings of the 1991 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pp. 143-155, May 1991.

[Squillante 93] Squillante, M., and Lazowska, E. "Using processor-cache afiSnity information in
shared-memory multiprocessor scheduling". IEEE Transactions on Parallel and Distributed Sys­
tems, vol. 4, pp. 131-143, February 1993.

[Stone 90] Stone, H. High Performance Computer Architecture, second edition, Addison-Wesley,
Reading. MA, pp. 309-311, 1990.

[Torrellas 93] Torrellas, J., Tucker, A., and Gupta A. "Benefits of cache-afBnity scheduling in shared-
memory multiprocessors; A summary". Proceedings of the 1993 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, pp. 272-274, May 1993.

[Tucker 89] Tucker, A., and Gupta, A. "Process control and scheduling issues for multiprogrammed
shared-memory multiprocessors". Proceedings of the 12th ACM Symposium on Operating Sys­
tems Principles, pp. 159-166, December 1989.

[Tuomenoska 85] Tuomenoska, D. L. and Siegel, H.J. 'Task scheduling on the PASM parallel proc­
essing system". IEEE Transactions on Software Engineering, vol. SE-11, pp. 145-157, February
1985.

[Zahoijan 90] Zahoijan, J., and McCann, C. "Processor scheduling in shared memory multiproces­
sors". Proceedings of the 1990 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pp. 214-225, May 1990.

[Zhou 91] Zhou, S., and Brecht, T. "Processor pool-based scheduling for large-scale NUMA multi­
processors". Proceedings of the 1991 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pp. 133-142, May 1991.

	1995
	Space sharing job scheduling policies for parallel computers
	Ismail Mohamed Ismail
	Recommended Citation

	

