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ABSTRACT 

The distinguishing characteristic of space sharing parallel job scheduling policies is that appli­

cations are allocated non-overlapping processor subsets. The interference among jobs is reduced, the 

synchronization delays and message latencies can be predictable, and distinct processors may be allo­

cated to cooperating processes so as to avoid the overhead of context switches associated with tradi­

tional time-multiplexing. 

The processor allocation strategy, the job selection criteria, and woikload characteristics are 

fundamental &ctors that influence system performance under space sharing. Allocation can be static or 

dynamic. The processor subset allocated to an ^plication is fixed under static space sharing, whereas 

it can change during execution under dynamic space sharing. Static allocation can produce more pre­

dictable run times, permits a wide range of compiler optimizations (e.g., static data distribution and 

binding), and avoids the processor releases and reallocations associated with dynamic allocation. Its 

major problem is that it can induce high processor firagmentation. 

In this dissertation, alternative static and dynamic space sharing poUcies that differ in the allo­

cation discipline and the job selection criteria are studied and compared. The results show that signifi­

cantly superior performance can be achieved under static space sharing if applications can be folded 

(i.e., allocated fewer processors than they requested). Folding typically increases program efficiency 

and can reduce processor fragmentation. Policies that increase folding with the system load are pro­

posed and compared to schemes that use unconstrained folding, no folding, and fixed maximum fold­

ing &ctor5. The adaptive policies produced higher and more stable system utilization, significantly 

shorter mean response times, and good ^mess curves. However, unconstrained folding resulted in 

considerably more severe processor fragmentation than no folding. Its advantage is that it exploits the 

efiGciency improvement that typically results when an application is allocated fewer processors. Conse­
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quently, it can produce shorter mean response times than no folding under medium to heavy loads. 

Also because of this efficiency improvement, dynamic policies that reduce waiting times by 

executing a large number of jobs simultaneously are more promising than schemes that limit the nimi-

ber of active jobs. However, limiting the number of active applications can be the superior approach 

when folding does not improve qiplication efficiency. 
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1 INTRODUCTION 

1.1 Extended Abstract 

Alternative topology-independent space sharing policies for scheduling parallel applications on 

multiprogranuned homogeneous multiprocessors are studied and compared in this dissertation. The 

distinguishing characteristic of space sharing is that programs are allocated distinct subsets of proces­

sors. The interference among jobs is reduced, the synchronization delays and message latencies can be 

more predictable, and cooperating processes may be allocated to distinct processors so as to avoid the 

overhead of context switches associated with traditional time-multiplexing. 

Distributed-memoty multiprocessors have commonly been space shared [Seitz 90], and space 

sharing has been proposed as the processor allocation strategy in two-level schedulers [Tucker 89]. In 

these schedulers, the operating system kernel allocates processors to applications and user-level library 

routines schedule application threads on the allocated processors. To reduce their cost, load balancing 

and latency hiding are carried out at the user-level rather than by the kernel. Two-level schedulers have 

been proposed for shared and distributed-memoiy machines [Tucker 89][Beckerle 92]. 

In a multiprogranuned parallel computing system, where several jobs may compete for proc­

essing elements, the functions of the job scheduling algorithm are job selection and processor alloca­

tion. For example, the algorithm may give priority to the job that arrived first and implement the space 

sharing processor allocation strategy. 

Space sharing can be static or dynamic. Under static space sharing, a program is allocated a 

fixed subset of processors. The subset's size can be determined in two basic ways: (1) it is fixed a pri­

ori (e.g., by the compiler or user), and the algorithm allocates that many processors; or (2) applications 

can be folded, that is, an application can be allocated fewer processors than it has requested. It is as­

sumed that a program, upon arrival, requests a number of processors from the allocation algorithm. 
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Under dynamic space sharing, the processor subsets allocated to applications can change 

during execution. Coordination between the allocation algorithm and the runtime system is needed. The 

algorithm decides the changes, and the runtime system reconfigures the applications for execution on 

the new subsets. 

There are several advantages to space sharing over traditional process-based scheduling. First, 

the context switches associated with time-multiplexing can be avoided. To achieve this, the loader or 

the runtime system, in coordination with the job scheduling algorithm, can adjust the job's process 

parallelism so that it is equal to the number of processors allocated and assign the processes to different 

processors. Second, when the processes comprising an application execute on distinct processors, co-

scheduling (i.e., the simultaneous dispatching of cooperating processes) is guaranteed. Coscheduling is 

essential when the processes interact extensively [Ousterhout 82]. Excessive synchronization delays 

can result if some cooperating processes are not running. 

Application folding and processor fragmentation are two fectors that strongly influence per­

formance under space sharing. Folding typically results in higher program efSciency. When an appli­

cation executes on fewer processors, the inefGciency caused by the serial fraction (Amdahl's law) and 

similar load imbalances is reduced and less interprocess communication and synchronization is typi­

cally needed. 

An algorithm produces processor fi^gmentation when it prevents processors from being allo­

cated. Under space sharing, there can be internal, external, and folding fragmentation. There is inter­

nal fragmentation when the number of processors allocated to a job exceeds the number it requested. 

For example, the allocation algorithm in a mesh distributed-memory system may allocate a submesh to 

a job whose processor demand is less than the submesh's size. Topology-based allocation is often used 

in distributed-memory machines to reduce communication overhead and interconnection contention, but 

it can produce high fr^mentation [Li 9l][Liu 94], A study of topology-dependent allocation is outside 

the scope of this research. 
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There is external fragmentation when free processors are not allocated to waiting applications. 

It exists, for example, when the number of free processors is less than the sizes of the waiting ^plica­

tions and folding is not supported. Folding may reduce the average processor fr'agmentation in static 

space sharing. If jobs can be folded arbitrarily, for example, a free processor need not remain idle if 

there is a waiting request. However, folding can produce a different type of fragmentation, folding 

fragmentation, which exists when there are idle processors and one or more folded jobs. It is defined as 

(Pj^-Pg)/P, where is the total processor demand of the running applications, the number of 

allocated processors, and P the number of processors in the target computer. 

Topology-independent dynamic space sharing is free from processor fragmentation. Folding 

fragmentation in static space sharing may be reduced if folding is limited; that is if applications wait 

until they can receive some fraction, not necessarily fixed, of the number of processors they have re­

quested. Folding is unlimited or unconstrained if applications can be folded to any degree (i.e., they 

are allowed to execute on a single processor independently of their processor requests). 

The role of the allocation algorithm is fundamental. The efficiency of the computing system 

depends on the scheduling effectiveness and the efficiency of programs. The scheduling effectiveness, 

Sg, is used to measure the ability of a static space sharing algorithm to avoid processor fragmentation. 

It is defined by the equation 5'g=Pj/min(/',/'j), where Pj is the current total processor demand. Topol­

ogy-independent dynamic space sharing can achieve 5^=1 because it is free from processor fragmenta­

tion. 

The system efficiency, is defined by the equation: 

Cs = — Se 

where ^jimp is the efficiency of program j when it is allocated mj processors. 

Folding has a strong influence on system efficiency as it can increase program efficiency and 

scheduling effectiveness. Both must be high for to be high. Because it is difficult to write efficient 
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highly parallel programs, high system efficiency may be easier to obtain with multiprogramming and 

moderate ^plication parallelism. 

No space sharing ^proach is obviously the best. In static space sharing, runtime application 

reconfigurations are avoided and a broad range of compiler optimizations (including static data distri­

bution) can be applied. However, there is processor firagmentation. Folding may reduce the average 

fragmentation and increase program efficiency, but it can increase cache misses and induce or increase 

swiping. The dynamic approach can achieve superior system utilization (it is free fi-om processor 

fragmentation when it is topology-independent), but it induces several sources of overhead associated 

with application reconfigurations. Assuming a distributed-memory machine, for example, these include 

context switches, cache reloads, and data migration. They may also include code migration, and swap­

ping as a result of folding. 

The goal of this research was to study and compare the static and dynamic space sharing strategies 

when allocation is topology-independent and the execution times of jobs are not known a priori. Several 

algorithms that implement the two strategies are compared in this dissertation. The algorithms differ in 

the job selection criteria and the folding method, and the objective is achieving short average turn­

around times and high system utilization. 

The results show that static space sharing should support folding, and the maximum &ctor by 

which applications are folded should be limited and increase with the system load. Adaptive limited 

folding is substantially superior to no folding and unlimited folding. It can result in significantly lower 

processor fragmentation and mean response times. Traditional no folding policies (e.g., first-fit and 

first-come-first-served) suffer from high processor fi'agmentation. Unlimited folding variants of these 

policies produced much worse fragmentation under most system loads, but they can yield significantly 

shorter mean response times under high loads because of the significant efficiency improvement that 

typically results fi'om folding. 

As expected, dynamic space sharing is superior to static space sharing when the overhead of 
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application reconfigurations is low. However, static space sharing can, depending on the frequency and 

cost of ^plication reconfigurations, be the better strategy. Because of the efGciency advantage of 

folding, dynamic schemes that reduce waiting times by folding a larger number of applications are 

more promising than others that reduce execution times by allowing only a small number of jobs to 

execute simultaneously. 

1.2 Background 

1.2.1 Classes of MBMD Machines 

System architecture, especially the organization of the memory subsystem, has a strong influ­

ence on the design of scheduling algorithms for MIMD multiprocessors. Parallel architectures are 

commonly classified according to this subsystem's organization. A uniform memory access (UMA) 

multiprocessor has a common main memory whose cost of access is independent of the address of the 

requesting processor. Encore's Multimax and Sequent's Symmetry are examples of UMA systems. 

In non-uniform memory access (NUMA) shared-memory systems, main memory is shared but 

hierarchical. Part of it is local (i.e., significantly less costly to access) to each processing element (PE), 

where a PE may consist of a single processor or a small bus-based cluster of processors. Examples of 

clustered NUMA systems are the Stanford Dash [Lenoski 92] and the Illinois Cedar [Eigenmann 91]. 

In distributed-memory multiprocessors, also called multicomputers, main memory is not 

shared, and processes executing on different processors must exchange messages in order to communi­

cate and synchronize their activities. Examples of multicomputers are Intel's iPSC/860 and the 

NCUBEs. 

In UMAs, processes are typically dispatched independently of the location of their code and 

data, and of where they executed previously. However, scheduling processes where they last executed 

can reduce the cache reload overhead and improve program performance [Squillante 93]P'orrellas 93]. 
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In NUMAs, executing processes or threads "close", in the memory hierarchy, to the shared 

objects they reference can significantly reduce the cost of memory operations and execution times 

[Chandra 93][Matkatos 92a][Markatos 92b]. As the speed of processors has been increasing faster 

than that of the memory subsystem, exploiting memory locality in recent bus-based systems, such as 

the Silicon Gr^hics Iris, can reduce memory access contention and also yield significant performance 

benefits [Markatos 92a][Markatos 92b]. 

In distributed-memory systems, applications are typically statically mapped and scheduled be­

cause the cost of data and code migration, and the overhead of managing the access to migrated data 

(e.g., access forwarding) are high. The mapping is often topology-based (i.e., processes that interact 

extensively are m^ped onto adjacent processing nodes) so as to reduce message delays and contention. 

The fundamental problem with static topology-based allocation is that it can produce high processor 

fragmentation [Li 91][Liu 94]. Thus, there is a tradeoff between system utilization and exploiting lo­

cality. 

With recent interconnection routing techniques (e.g., wonnhole routing), message delays due to 

the number of hops between the communicating nodes are significantly reduced, and non-contiguous 

allocation schemes are receiving increasing interest [Naik 93b] [Liu 94]. Experiments on a 208-

processor Paragon, a distributed-memory machine that uses wormhole routing, indicate that the con­

tention overhead in non-contiguous allocation may not be so severe so as to offset the benefits of re­

duced fragmentation [Liu 94]. An earlier parallel programming environment for hypercubes, the Cos­

mic Environment [Seitz 90], also supported non-contiguous allocation. Applications could request an 

arbitrary number of processing nodes. 

1.2.2 Granularity of Process Interactions 

The granularity of parallelism describes the amount of work a process accomplishes between 

consecutive interactions; that is, between consecutive communication or synchronization events. It is 
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fine if the amount of woric is "small", coarse if it is "large". The granularity is described more precisely 

if the ratio R/C is used, wiiere R is the computation time between two consecutive interactions, and C 

is the cost of the interaction [Stone 90], It is fine if R/C is small, coarse if it is large. 

A major goal of computer architecture and parallel programming language development has 

been the design of large parallel systems that can efficiently support fine-grained process interactions. 

For example, this is a goal of the Stanford Dash shared-memory machine [Lenosid 92], the *T distrib-

uted-memory system fi'om Motorola and MIT [Beckerle 92], and wormhole routing [Seitz 90], 

Fundamental properties of scheduling algorithms depend on parallelism granularity. A basic 

issue is whether scheduling cooperating processes independently, as in traditional process-based 

scheduling, is appropriate when parallelism is fine-grained. For example, the *T multithreaded distrib-

uted-memoiy system has machine instructions that support microthreading and split-phase transac­

tions. Programs use them to hide the latency of requests for remote objects. When a computation needs 

remote data, one of its threads initiates the necessary network messages and terminates. The processor 

is then switched to a ready microthread. A data request message contains the address of the computa­

tion's continuation thread and is addressed to a program thread in the remote process that holds the re­

quested item. The suspended thread becomes ready and joins the ready microthreads when the remote 

data is received [Beckerle 92]. 

Processes that make fi-equent use of split-phase transactions to synchronize their activities or 

communicate should be active simultaneously to achieve desired performance. Static space sharing that 

assigns cooperating processes to different processors, and (round-robin) coscheduling [Ousterhout 82] 

are ^propriate candidates for this system. In coscheduling, cooperating processes are assigned to dif­

ferent processors, and they are dispatched together in a round-robin fashion. An advantage of static 

space sharing is that it avoids the context switches associated with time-multiplexing. Although dy­

namic space sharing algorithms can achieve the optimal scheduling effectiveness (i.e., iS'e=l), it may not 

be a better solution because the cost of migration and access forwarding may be excessive. 
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Traditional process-based scheduling can lead to high synchroni2ation delays and poor pro­

gram turnaround times in UMA (Tucker 89] and NUMA systems [Eigeimiaiui 91], Tucker and Gupta 

[Tucker 89] determined experimentally on a 16-processor Encore Multimax, a UMA shared-memory 

machine, that performance can degrade when the number of processes exceeds the number of proces­

sors and regular preemptive priority-based scheduling is used in conjunction with busy-waiting syn­

chronization. The severity of the degradation increased with the number of processes. In their experi­

ments, several programs were used, the sizes of the programs were fixed, but the number of processes 

they spawned varied. Context switches are a major cause of performance degradation. For example, a 

process may be preempted in a critical section, blocking the entry of other processes to the section until 

the process is resumed. The higher the load, the longer a preempted process spends in the waiting queue 

and the more likely it is that cooperating processes are prevented fi-om entering the critical section. In 

their solution, process control, the number of processes is controlled so that it does not exceed the 

number of processors, and the processes are assigned to different processors. In this way, preemptions 

are avoided. In addition to avoiding the preemptions associated with time-multiplexing, process control 

takes advantage of the increase in efficiency that typically results fi'om folding. 

When processes interact frequently, poor performance can result even if the kernel, upon re­

quest from the user, does not block a process in its critical section. When a process is preempted at the 

end of its time-slice, cooperating processes cannot, once they reach the next interaction point, make 

progress until the preempted process is resumed. If they block, they may cause yet other processes to 

block, etc.. This can lead to an excessive number of context switches. 

However, multiprogramming at the processor level has been widely used in distributed-memory 

systems designed for coarse-grained parallelism. It provides a mechanism for hiding the high message 

latency in these systems. For example, the Cosmic Kernel node operating system supported a blocking 

receive system call. A process that issued this call was suspended if there were no messages for it, and 

a process that had one was dispatched. Time-slicing was used to enforce fairness by preventing proc­
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esses from nmning uninterrupted for too long [Seitz 90], 

This approach is ine£Scient when parallelism is fine-grained. A context switch entails a process 

state save and restore, and a system call typically entails a trap, saving the contents of machine regis­

ters, and restoring them upon exit from the call. Moreover, system calls are normally general in that 

they provide the sum of services required by users and typically include code that protects the kernel 

from user errors [Anderson 92]. For these reasons, two-level schedulers are a promising scheduling 

approach, and distributed-memory systems designed for finer-grained parallelism (e.g., •!) support 

microthreading and user access to the network inter&ce. In two-level schedulers, user-level library 

routines are responsible for thread scheduling so as to reduce its cost. The high-level scheduler is part 

of the kernel, and is responsible for job selection and processor allocation. 

1.2.3 Programnning Languages and Models 

Scheduling algorithms and programming models are not independent. For example, several 

parallel programming systems (languages and libraries) include statements for explicitly mapping 

processes onto specific processors. With these statements, a space sharing allocation algorithm may not 

run explicitly-mapped processes untU the requested processors are free. This can increase or induce 

processor fragmentation. For example, topology-independent dynamic space sharing is not free from 

processor fragmentation in this case. 

When the number of processors allocated to an application is less than its process parallelism, 

two scheduling techniques may be used. In the first, the number of processes is decreased so that it is 

equal to the new partition size and a processor is assigned a single process. A threads package that uses 

the shared task queue parallel execution model has been used for implementing this approach in shared-

memory systems [Tucker 89][McCann 93], Tasks are added to the queue when they are created and 

fetched for execution when processors need work. Parallelism is controlled when the task queue is ac­

cessed. The task queue model suffers from several sources of overhead, including the critical sections 
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that control access to the queue(s), and the extra instructions needed to read task descriptors. 

In small systems, a single queue may be appropriate. However, multiple queues are needed in 

large systems to reduce access contention, especially when the tasks are fine-grained. Significant per­

formance improvement can result if tasks execute close to the data objects they reference. These in­

clude cached objects, and objects residing in local memory in NUMA machines. To improve cache hit 

rates, the de&ult thread scheduling policy in FastThreads uses a local threads list that is serviced in 

last-in-first-out order. A processor scans other lists when its list is empty [Anderson 92]. An issue is 

how to partition the work for load balancing and data locality. The tradeoff between these two &ctors 

is investigated in [Squillante 91][Maiicatos 92a][Markatos 92b][Markatos 93]. 

In the second scheduling technique, the number of processes is not changed, but their execution 

is interleaved. The sources of overhead include load imbalance, which can be much higher than when 

parallelism is controlled and the task queue model is use4 and the process context switches associated 

with time-multiplexing. 

In static space sharing policies that support folding, processor allocation is determined at load 

time. The compiler must generate object code that can be bound to any number of processors. MITs Id 

compiler for the Monsoon, for example, generates code that can run on any number of processors 

[Hicks 93], 

1.2.4 Relationship between Allocation and Efficiency 

Speedup and efficiency are commonly used to measure the performance of a parallel applica­

tion when it executes on a dedicated set of processors. When the application is allocated m processors, 

its efficiency, and speedup, Speedup{m), are defined as; 

and 
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Speedup(m) = -^lp-
t(m) 

where t{j) is the execution time of the application on J processors. Speedup is linear if t{\)lt(rn)=m, su-

perlinear if t{\)lt(m)>m, and sublinear otherwise. 

The efficiency of a parallel program typically increases when the number of processors it is 

(exclusively) allocated decreases. The allocation decrease reduces the effect of the serial fraction 

(Amdahl's law) and other load imbalances due to lack of parallelism, and it typically reduces communi­

cation and synchronization. Allocating more processors to a program can improve cache locality and 

reduce or avoid swapping. However, it is assumed that efficiency does not increase with m in this re­

search because applications seldom have superlinear speedup. 

An important issue is determining the number of processors an application should use, n. As m 

increases, the efficiency and the incremental reduction in execution time typically decrease. Often, the 

speedup curve is convex in m; that is, the speedup decreases if m increases beyond some value, M. 

Many applications and algorithms have this type of speedup curves. Examples abound in the literature. 

Obviously, n should not exceed Af as additional processors increase the execution time. 

Gustafson suggests that the size of the problem be increased with the number of processors 

[Gustafson 88]. Given m processors, increasing the size of the problem can increase ^m). However, 

this method is not always useful as ^plications can have fixed sizes. Assuming that the execution 

times of the {^plication as a function of m are known, several methods for determining the value of n 

have been proposed [Flatt 89][Ghosal 91][Gupta 93]. For example, Ghosal, et al, [Ghosal 91] propose 

that n be the smallest value of m that maximizes the cost function Speedup(m)*^m) (choosing n that 

optimizes this function had been proposed by Kuck in 1976 [Flatt 89]). The value of t{ri) determined by 

these methods can typically be significantly reduced by allocating more processors. When the system 

load is moderate, a hi^er limit on the value of n can improve turnaround times. Methods based on the 

minimum, average, maximum, and variance of parallelism have also been proposed [Sevcik 89], These 

methods are discussed in more detail later. 
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1.3 Space Sharing Scheduling Policies 

Because of the presence of multiple processors in a parallel computer, space sharing and time 

sharing can be used. In space sharing, a job is allocated a distinct subset of processors; that is, no 

processor is concurrently assigned to more than one job. Space sharing may be static or dynamic, h 

static space sharing, the subset (partition) is fixed for the lifetime of the job. However, it can change in 

size and in the processors it contains in dynamic space sharing. 

Process scheduling within program partitions is not modeled in this research. Several tech­

niques, discussed earlier, may be used. In process control, for example, the number of processes is 

controlled so that is equal to the partition size, a processor is dedicated to each process, and load bal­

ancing and thread scheduling are carried out by the programming language runtime system in coordi­

nation with the operating system kernel. Traditional process-based scheduling may also be employed. 

The operating system kernel interleaves the execution of processes when their number exceeds the 

number of processors they are allocated. 

1.3.1 Static Space Sharing 

Two basic techniques have been used for implementing static space sharing in parallel systems. 

Under the machine partitioning technique, the system is subdivided into disjoint partitions independ­

ently of individual applications, and an qjplication is commonly allocated a single distinct partition 

(when it is not stated otherwise, this one-to-one mapping is assumed). The partitioning may be fixed or 

adaptive. In fixed partitioning, the number and sizes of the partitions are constant, whereas they can 

vary in adaptive partitioning. An issue with preventing applications fi-om running on more than one 

partition is that it can lead to poor system utilization under moderate loads, when idle partitions are 

unlikely to be allocated soon. 

In the program-based partitioning technique, partitions are created for individual applications. 

When an application is selected for service, the allocation algorithm determines which free processors 
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to assign to it. The main advantage of this technique is that it can achieve superior system utilization. 

1.3.1.1 Fixed Partitioiiing 

A subclass of fixed partitioning poUcies, based on equipartitioning, was the subject of several 

recent studies [Ghosal 91][Naik 93b][Setia 93]. The machine is subdivided into partitions of equal size, 

an ^plication is allocated a single partition, and several partition sizes were considered in these stud­

ies. Using the throughput to mean response time ratio as performance parameter, the results in [Ghosal 

91] show that; (1) the performance of fixed equipartitioning depends on the size of the partitions, the 

processor demands of the applications, and the system load, (2) the best partition size generally de­

creases with the load, and (3) a policy based on the first-fit allocation discipline, FF+FIFO, is superior 

(under most load levels) to fixed equipartitioning, including when the best partition size (i.e., that which 

produced the best performance) considered in the study is used. In [Naik 93b][Setia 93], the mean re­

sponse times decreased when the number of partitions increased with the system load. 

No algorithm that determines the best number of partitions is given or used in the three studies, 

and the influence of job sizes on the performance of fixed equipartitioning was not adequately investi­

gated. For example, the applications can use all processors in [Setia 93], and a small set of applications 

(five ^plications) was used in [Ghosal 91], Another issue is how to dynamically change the number of 

partitions in this static allocation approach, while maintaining equipartitioning. 

There are three general issues with equipartitioning. First, it suffers fi-om internal fi'agmenta-

tion, which results when the maximum process parallelism of an active job is smaller than the size of 

the partitions. Second, only a subset of partition sizes can be used because the number of partitions 

must divide P. The third issue is that other partitioning strategies may be better when the distribution of 

the processor requests of applications is general. 
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1.3.1.2 Adaptive Partitioning 

The partitions vary in their sizes and number during machine operation in this processor allo­

cation strategy. The current workload characteristics and system load, for example, may be used in 

determining these parameters. That the performance of the fixed equipartitioning policy improves when 

the number of partitions increases with the load, as shown in [Ghosal 91][Naik 93b][Setia 93], implies 

that an adaptive equipartitioning policy in which the number of partitions is appropriately determined 

by the system load should be superior to fixed equipartitioning. 

1.3.1.3 Program-based Partitioning 

Several program-based partitioning policies that differ in the folding method have been studied. 

The FF+FIFO allocation policy, proposed by Ghosal, et al, [Ghosal 91] for shared-memory machines, 

uses a FIFO waiting queue and has two phases. In the first phase, the first-fit (FF) algorithm is run and 

the selected applications are allocated as many processors as they request. If there remains £*66 proces­

sors, they are allocated to the head of the queue in the second phase. This policy outperformed several 

schemes, including FF and equipartitioning that uses the best number of partitions, under most system 

loads. 

Folding is imlimited in FF+FIFO. An application may run on any nimiber of processors that 

does not exceed its processor request. There are two problems with unlimited folding in static space 

sharing. First, when an appUcation is allocated a very small number of processors, its execution time 

typically increases considerably. The application may complete much sooner if it waits for more proc­

essors to become available. Second, released processors are likely to remain idle for a long time, espe­

cially under moderate system loads, for two reasons: (1) the average length of the waiting queue is 

smaller than when folding is constrained or not supported, and (2) processors are not allocated to 

folded jobs in static space sharing. A job may be executing on fewer processors than it requested while 

processors are idle, The problems with unlimited folding are discussed in detail in the next Chapter. 
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Abraham and Padmanabhan [Abraham 92] studied a program-based partitioning policy that 

limits folding. An ^plication is not serviced until it can receive at processors, where n is 

the ^plication's processor request and fmax ^ constant. When a program is serviced, it receives mini-

mvsa(FP,n) processors, where FP is the number of free processors. An issue is determining the value of 

/max- Using simulation, they determined that it should be 3 or 4. With these values, the limited folding 

policy outperformed first-fit and first-come-first-served (FCFS) significantly. One limitation of this 

study is that these values were determined through experimentation under limited load and work­

load characteristics, and they may not be appropriate across a wider range of system loads and work­

load characteristics. 

Naik, et al., [Naik 93b] studied another policy that supports limited folding and compared it to 

fixed equipartitioning. In this policy, a request is not serviced until it can receive at least some fixed 

number, mitt, of processors. When a job completes, the fi-ee processors are divided evenly among the 

waiting programs under the above constraint. The policy produced better average turnaround times 

than fixed equipartitioning, including when the best number of partitions considered in the study is 

used. An issue is determining the value of min. For example, folding can be excessive if min is small, 

and many jobs are not folded if it is high. A second issue is whether the equal division of fi-ee proces­

sors among waiting jobs is a good policy. In their simulation experiments, the target machine is a 256-

processor distributed-memory multiprocessor, and min is 32. The choice of this value is not explained. 

It presumably produced the best performance. 

1.3.2 Multiprogrammed Static Partitioning 

In this approach, allocation is static and the partitions are multiprogrammed. More than one 

job may be simultaneously assigned to the same partition. Multiprogramming at the processor level is 

commonly used to overlap communication and computation in distributed-memory systems that have 

high message latencies. 
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In a study by Setia, et al, [Setia 93], the partitions are equal in size, and a job is assigned to a 

single partition. In the program model used, parallelism is coarse-grained, the program consists of one 

or more phases, and the processes synchronize at the end of each phase. Using simulation, and assum­

ing that the processor requests of the jobs are equal to the machine size, they compared multipro-

grammed and uniprogrammed equipartitioning using several partition sizes. Their results show that 

multiprogrammed equipartitioning can outperform uniprogrammed equipartitioning under all load lev­

els when the load imbalance within programs (the variance of the execution times of processes) is high. 

However, when the imbalance is small, uniprogramming can be better under low to moderate system 

loads (< 0.6 in their study). Their results also show that the best number of partitions increases with the 

load in uniprogrammed and multiprogrammed equipartitioning. 

There are several issues with this study. First, the variance of the execution times of processes 

is assiuned to increase linearly when a job is folded. In practice, it may decrease or its increase may be 

sublinear. Second, the performance of multiprogramming is highly sensitive to the granularity of com­

putation and the value of the time-slice. Third, it is not clear how equipartitioning, uniprogrammed or 

multiprogrammed, will perform when the processor requests of applications have a general distribution. 

Multiprogrammed fixed equipartitioning was proposed by Ahmad, et al, [Ahmad 94] for 

scheduling ^plications with dynamic structures on hypercube multicomputers. The hypercube is di­

vided into spheres (partitions with a locality property and a median processor) of equal size. A host 

computer assigns an application, for its lifetime, to the sphere with the smallest number of main tasks. 

When a subtask is created, the median assigns it to the least loaded processor in its sphere. The proces­

sor load is the number of subtasks it is assigned. When compared with a neighborhood averaging dis­

tributed scheduling algorithm, this hierarchical two-level allocation scheme produced better mean re­

sponse times. In the simulation experiments, a 2S6-node machine was subdivided into a fixed number 

(16) of spheres. A problem with this strategy is that it can lead to poor system utilization because ap­

plications can not use more than one sphere. Spheres are likely to idle for a long time under moderate 
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loads. 

In the pool-based scheduling technique, proposed and studied by Zhou and Brecht [Zhou 91] 

for clustered NUMA systems, the machine is subdivided into partitions of equal size, the partitions are 

multiprogrammed, and a job may span several partitions. A job that runs on a given number of proces­

sors is assumed to sufifer more overhead when it spans more partitions. Their simulation results show 

that this technique can result in significant reductions in mean response times, and spanning should be 

restricted or disallowed. However, limited spanning produced better results than no spanning. Although 

the best number of partitions decreased when the average job parallelism increased, two partitions pro­

duced good performance. 

Using queuing theory to study job scheduling in distributed-memory machines, Setia, et al, 

[Setia 94] show that applications should run on fewer processors when the load increases. In the 

woridoad model used, the ^plications have the same maximum process parallelism, N, and a job's 

processes synchronize once prior to terminating. The allocation policy considered is parameterized in 

an integer Z that divides N. A new job is split into Z components of size NIZ that are assigned to the Z 

processors that have the shortest local scheduler queues. The processing nodes scheduler supports 

multiprogramming and services the processes in its local queue using the FCFS discipline. The mean 

response times obtained with several parameter values show that Z should decrease with the load, and 

the rate of decrease should increase with parallelism overhead (e.g., communication and synchroniza­

tion overiiead). 

1.3.3 Dynamic Space Sharing 

The subset allocated to an application can change in size and in the processors it contains 

while the application is running. The main advantage of this strategy over static space sharing is that it 

can reduce processor Segmentation. A job that is allocated less than the number of processors it had 

requested can use processors released later, and processors need not remain idle if there is an allocation 
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request. This is important under moderate loads, when released processors are otherwise likely to re­

main idle for a relatively long time. The number of processors allocated to a job can also vary accord­

ing to its parallelism. This can reduce load imbalances within applications, and it may, depending on 

the overhead of processor releases and reallocations, improve job performance and system efficiency. 

The overiiead depends on the cost of the release/reallocation operations and on their frequency. If proc­

ess-level parallelism is fine-grained and variable, the number of these operations can be excessive. 

1.3.3.1 Process Control 

The goal of this technique, proposed by Tucker and Gupta {Tucker 89] for shared-memory 

multiprocessors, is to reduce the number of context switches induced by traditional process-based time 

sharing. The number of processes is dynamically controlled so that it does not exceed the number of 

processors, a processor is dedicated to a single process, and time-multiplexing is avoided. 

In the prototype implemented on a Multimax, the processors used by controllable jobs (i.e., 

jobs whose process parallelism can be varied) are divided evenly among them, however a job is not 

allocated more than the number of processors it requested. Controllable qiplications use a threads 

package that supports the shared task queue model and process control. In comparison to traditional 

priority-based scheduling, this policy reduces the number of context switches as processes are sus­

pended only when their job's allocation is decreased. Significant reductions in turnaround times were 

obtained. For some applications, the improvement was by more than a &ctor of two. An issue vnth this 

equipartitioning implementation scheme is that smaller jobs receive a larger Suction of their processor 

request. Larger jobs are discriminated against and the efficiency advantage of folding is not exploited 

uniformly across job sizes. 

McCann, et ai, [McCann 93] implemented and compared three scheduling policies on a Se­

quent Symmetry multiprocessor, a UMA shared-memory machine. They are called: round-robin job 

(RRjob), Equipartition, and Dynamic. In RRjob, originally proposed by Leutenegger and Vernon 
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[Leutenegger 90], a job is assigned n processors for a time interval t=kln when its turn arrives, where n 

is the maximum number of processors the job can use at any time during its execution (i.e., its maxi­

mum process parallelism) and jt is a constant. The unassigned processors are given to the job whose 

turn is next. In the woridoad used, the values of n exceed PH, where P is the number of processors in 

the machine. In Equipartition, the machine is subdivided evenly among the competing jobs and alloca­

tion is independent of instantaneous job parallelism. In Dynamic, the allocation depends on actual con­

currency. Jobs request processors as they need them, and mark those they caimot currently use as 

"willing to yield". Free and willing to yield processors are allocated first, then equipartition is enforced 

by preemptmg processors from the job(s) with the largest allocation. Jobs schedule their threads using 

a low-level scheduler that manages a shared task queue and has support for process control. 

RRjob resulted in the longest response times as it does not take advantage of the efBciency ad­

vantage of folding, and because progress is impeded when only a subset of a job's processes are active. 

Dynamic yielded better average turnaround times than Equipartition. The improvement was small 

(about 10%), but significant. The decrease in job idle times it produced was larger than the additional 

overhead it incurred because of its larger number of processor releases and reallocations. 

1.3.3.2 Preemptive Policies 

A problem with static space sharing is that waiting times can be excessive when long jobs are 

running. Assuming that the execution times can be estimated a priori Naik, et al, [Naik 93b] used 

simulation to study a preemptive space sharing policy that gives priority to short jobs. The target sys­

tem is a distributed-memory multiprocessor, and jobs are classified a priori as short, medium, or long. 

When a job arrives, processors can be preempted fi-om medium and long jobs, but not firom short jobs. 

It is assumed that medium and long applications can be dynamically reconfigured. When processors are 

released, they are subdivided evenly among waiting applications under the constraint that they do not 

receive more than their processor request or less than some fixed number of processors. 
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When compared to their nonpreemptive limited folding static scheme, discussed earlier (see 

Section 1.3.1.3), this policy produced better average response times for short jobs, but the performance 

of medium and long jobs suffered under medium to high loads. In their experiments, the execution 

times of medium and long jobs are considerably longer than those of small jobs. Issues with this 

scheme are implementing ^plication reconfigurability, the cost associated with preemptions and re­

configurations, and the assumption that jobs can be classified in advance according to their execution 

times. 

1.4 Other Related Scheduling Disciplines 

1.4.1 Scheduling in the Xylem Operating System 

This operating system runs on the Illinois Cedar computer, a clustered NUMA machine. A 

parallel program runs as a Xylem process, which contains one or more tasks assigned to Cedar clusters 

for their lifetimes. The tasks are scheduled independently. The Cedar Fortran runtime library has three 

variations, which are called Queued, Simple, and Static. The Queued and Simple variations support the 

shared queue subtask scheduling model. In the Queued version, a wait-then-block technique, proposed 

by Ousterhout [Ousterhout 82], is used to reduce the number of context switches. A task holds onto its 

processor for some time interval when it has to wait for an event. The hope is that the event will happen 

before the interval expires, and thus avoid the context switch. The task is blocked if the event does not 

occur within the interval [Eigenmann 91]. 

There are two problems with the wait-then-block technique. The first problem is that the best 

interval length is difficult to determine because it is ^plication-dependent. Having the programmer 

specify this length is not a good solution because users should not be trusted in setting it. The second 

problem is the time that a task, once blocked, spends in the suspended state. Other tasks that interact 

with it may also be preempted, especially under heavy load when a blocked task is likely to spend a 
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long time in the suspended state. An excessive number of context switches can result, depending also 

on the granularity of process interactions. Notwithstanding the wait-then-block technique, Eigenmann, 

et al, note that "Synchronization delays can be quite high because the task scheduler on each cluster 

and the microtask schedulers in each process work independently." [Eigenmann 91, page S]. Space 

sharing that guarantees the simultaneous execution of cooperating tasks is a potential solution to this 

problem. 

The Simple library version uses busy-waiting synchronization. Tasks do not surrender their 

processors when they must wait. Reductions in mean response times for individual applications were 

obtained under light conditions. A problem with busy-waiting is that it can lead to excessive spinning 

times for synchronization events. In the Static Ubrary version, loops are statically mapped and dis­

patched. For example, the iteration space of a parallel loop can be distributed among the tasks. The 

critical section that controls access to the shared subtask queue is avoided, but the load imbalances can 

be high. 

1.4.2 Round-Robin Coscheduling 

In this strategy, proposed by Ousterhout [Ousterhout 82] for multiprocessor systems that 

permit extensive (fine-grained) process interactions, an sqjplication's runnable processes are dispatched 

and preempted together. Coscheduling solves the problem of excessive synchronization and communi­

cation delays that can result when a proper subset of cooperating processes is not running. However, it 

suffers from several sources of inefiBciency, including the corruption of cached code and data by inter­

leaved applications, the potential need to swap groups of processes at the same time, and the overhead 

of context switches. Moreover, coscheduling, as specified by Ousterhout, does not take advantage of 

the increase in efficiency that typically results when an application executes on fewer processors. A job 

is assigned to as many processors as it requests. However, folding can be used with coscheduling. 
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1.4.3 Abstract Process-Based Scheduling Policies 

Assuming that parallel jobs consist of independent processes, Majumdar, et al., [Majumdar 

88] studied several abstract process-based scheduling policies for shared-memory multiprocessors, in­

cluding FCFS, round-robin process (RRprocess), preemptive smallest cumulative demand first 

(PSCDF), smallest number of processes first (SNPF), and preemptive SNPF (PSNPF). In PSCDF , for 

example, processes that belong to the job with the shortest remaining total demand are given preemp­

tive priority. Processes belonging to the job with the snudlest number of processes that have not yet 

completed are given preemptive priority in PSNPF. PSCDF produced the best average response times, 

however it requires that the remaining execution times be known. 

Leutenegger and Vernon [Leutenegger 90] also evaluated these policies using simulation and 

assuming a shared-memory multiprocessor. They concluded that their general performance ordering, 

from best to worst, is: PSCDF, RRprocess, PSNPF, SNPF, FCFS. However, RRprocess can perform 

worse than SNPF when the total service demand of jobs is linearly dependent on the number of proc­

esses. In this case, a job with a small number of processes is likely to have a small total processing de­

mand. A fundamental problem with these policies, with the possible exception of RRprocess, is the as­

sumption that processes are independent. Moreover, experimental evidence shows that round-robin 

process-based policies can perform poorly in shared-memory multiprocessors when the number of 

processes exceeds the number of processors [Tucker 89][Markatos 93]. 

Leutenegger and Vernon [Leutenegger 90] also studied two non process-based policies that 

attempt to allocate an equal fiaction of the processing power to each job; round-robin job (RRjob), and 

process control, proposed by Tucker and Gupta [Tucker 89]. These policies produced comparable 

mean response times. However, equipartition outperformed RRjob significantly in experiments by 

McCann, et al, [McCann 93]. 
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1.4.4 Job Scheduling with Detailed Characterization of Parallel Execution 

The execution of a parallel program on dedicated processors is commonly characterized by its 

execution curve, which gives the execution times as a function of the number of processors used. Intui­

tively, superior space sharing policies can be designed if the execution curves are known in advance. 

Assuming that the influence of multiprogramming on the performance of applications is negligible, the 

on-line job scheduling problem can be considered as an instance of the on-line two-dimensional bin-

packing problem when jobs are allocated contiguous linear subarrays of processors [Coffinan 91]. One 

of the dimensions is space (i.e., the processors), and the second is time. When folding is supported, the 

rectangles to pack are malleable and superior packing is possible. The allocation algorithm can, for 

example, ensure that folding does not delay job completion because it can determine when the busy 

processors will be released. Alternatively, the algorithm may allocate more processors to short or efiB-

cient programs. 

Zahoijan and McCann [Zahoijan 90] compared static space sharing, dynamic space sharing, 

and round-robin coscheduling using three algorithms, each representing one of these scheduling classes. 

The static space sharing algorithm bases allocation on the execution curves. The execution time of a 

waiting job is defined to be very large, and the job whose execution time will decrease the most follow­

ing the aUocation of an additional processor is given priority. Thus, an application is allocated one 

processor before any receives additional processors. There are several problems with this scheme. 

First, it supports eager unlimited folding, which, as it will be shown in Ch^ter 2, can result in exces­

sive folding and poor mean response times. For example, when a job that is allocated two processors 

terminates, two waiting jobs may be serviced. The jobs may complete much sooner if they wait for 

more processors to become available. The second problem is that the algorithm will typically give pri­

ority to long jobs as their execution is likely to decrease the most when they are allocated additional 

processors. The coscheduling algorithm supports folding and process migration in order to exploit the 

efiBciency advantage of folding and reduce processor fragmentation. In the dynamic policy, applications 
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request processors as they need them, but allocation does not depend on the execution curves. If there 

are no free processors when a new job arrives it is allocated a processor taken away from a job that is 

allocated multiple processors. If any part of a job's request is not satisfied it waits. When processors 

are released, waiting applications that are allocated no processors are given priority for the allocation 

of their first processor. Each is allocated one processor, if possible. The remaining processors are then 

allocated to requests for additional allocation on FCFS basis. A problem with this scheme is that some 

active jobs may be allocated a large number of processors while others that arrived later are allocated a 

few processors. 

The three policies were compared using simulation. The workload consists of several program 

structures that exhibit variable parallelism, and the target multiprocessor is UMA. The results show 

that the dynamic algorithm can outperform the static algorithm depending on the overhead of processor 

releases and reallocations. The round-robin coscheduling scheme produced the worst mean response 

times [Zahoijan 90]. 

K. Sevcik [Sevcik 89] studied the influence of using several characteristics of program paral­

lelism on the performance of static space sharing. The characteristics for application j are the average 

parallelism Aj, variance of parallelism, Vj, minimum parallelism, mj, and maximum parallelism, Mj. 

He proposed that job j be allocated Aj processors across all system loads if Vj~0, otherwise it should be 

allocated fewer processors when the load is higher. The rate of allocation decrease should increase with 

Vj. When Vj is high, the job should be allocated processors imder very light load and mj processors 

under very high load. The simulation results show that folding can produce significantly shorter mean 

response times when the variability of parallelism is greater than zero. 

1.4.5 Hierarchical Process Allocation Algorithms 

As the size of the target system increases, a centralized scheduling algorithm may become a 

botdeneck. To address this problem, Feitelson and Rudolph [Feitelson 90] proposed that the scheduling 
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fiinctioa be carried out by dedicated hierarchical control processors. In their simulation study of hierar­

chical coscheduling, a binary tree of controllers is used. Processors at levelin cooperation with their 

subordinates, are responsible for scheduling tasks that require a number of processors in the interval 

[2'"1+1,2']. The tree leaves are at level 1. A parallel machine of size P requires P-l control processors. 

An issue is whether such high cost is justifiable even if the control processors are, as proposed, less 

expensive than the processing nodes. Moreover, the bottleneck problem persists if many applications 

have large processor requirements as the processors in the higher levels of the tree, which handle large 

jobs, are smaller in number. 

In the multiprogrammed fixed equipartitioning policy proposed by Ahmad, et al, [Ahmad 94] 

and discussed earlier, a two-level scheduling hierarchy is used. The target (a hypercube multicomputer) 

is partitioned into a fixed number of spheres, the host assigns a main task to a single sphere, and the 

sphere's median assigns its subtasks to processors within the sphere. 

1.4.6 OfT-Line Scheduling 

In off-line scheduling, the list of applications to be scheduled is fixed (i.e., the job arrival proc­

ess is not dynamic). The policies discussed above are on-line. The problem of allocating processors to a 

list of ^plications can be viewed as an instance of the widely-studied off-line two dimensional bin 

packing problem [Baker 80][Cof&nan 80][Cof&nan 91] when the execution times on the number of 

processors requested are known, the jobs are allocated contiguous linear processor subarrays, and the 

goal is minimizing the overall completion time. 

Assuming the execution curves are known, Krishnamurti and Ma [Krishnamurti 92] proposed 

an off-line heuristic for scheduling application lists on partitionable multiprocessors. The sizes of the 

partitions are a subset of {1,..,P}. In the heuristic, each application is allocated the smallest partition 

size initially. This step is followed by an iterative procedure that allocates the smallest number of addi­

tional processors to the £^plication that would complete last if it executed on the number of processors 
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it is currently allocated. The goal is to produce a short overall completion time. 

Off-line scheduling is not considered in this research. However, the same heuristic is often used 

in oflF-line and on-line scheduling (e.g. first-fit). A heuristic may perform well in both cases for the 

same reason. 

1.5 System and Workload Models 

The target multiprocessor for this woric consists of P identical processing elements, an appli­

cation is allocated its own subset of processors, and allocation is topology-independent. The algorithms 

studied in this dissertation can also be used when parallel programs are organized as tasks that can be 

scheduled independently, where a task is a collection of cooperating processes. In this case, processors 

are allocated to tasks instead of applications. 

It is assumed that a new application requests a number, n, of processors, and that n does not 

exceed P. Unless it is specified otherwise, other job characteristics are not assumed to be known and 

the sole job characteristic used in making allocation decisions is n. 

The algorithms are evaluated using simulation. The simulator was developed in the C pro-

granuning language, and is event-driven. Jobs arrive from a Poisson source. The system load parame­

ter, L, is computed using the equation L=(A*N*Te)IP, where N is the mean processor request, Tg the 

mean execution time, and X the arrival rate of jobs. 

To study the effects of the efiSciency advantage of folding on the performance of the scheduling 

policies, it is assumed that a job consists of a serial and a parallelizeable components in some of the 

experiments. The corresponding speedup is sublinear and monotonically increasing in the number of 

processors allocated, and is denoted by the acronym MISP in this dissertation. The values of ^n) are 

generated using a pseudo-random variable distributed uniformly over a subset of the interval [0,1] in 

these experiments. However, the efficiency values that correspond to a serial fraction exceeding 0.5 are 

discarded. As ^m) increases when m decreases, L can exceed one without saturating the system when 
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the allocation policy supports folding. 

The processor request n, execution time Hfi), and efiSciency ^n) generated by the simulator for 

a new job are used in computing the job's execution time when it is allocated fewer than n processors. 

The job's serial fraction,^, is computed by the equation; 

i - m  

and the execution time on m processors, t{m), is computed by: 

Linear speedup is assumed in other simulation experiments. The execution time t{m) is com­

puted then by the equation t{m)=n*t(ri)lm. 

The distributions of the execution times and the values of n are not well-known. However, they 

are often assumed to be exponential or uniform. The results of a Cray X-MP (a pipelined vector proc­

essor) workload characterization study over a two-month period show that about 28% of the private 

jobs were short, 44% were medium, and 29% were long. The number of jobs submitted over the period 

exceeded 60000 [Pasquale 91]. These results suggest that the exponential distribution, although com­

monly used, may not be appropriate for modeling the execution times of scientific applications. 

The distribution of n depends on machine size, machine architecture, and program characteris­

tics. Determining the number of processors an application should use is an active area of research, but 

is still mainly performed by ^plication developers. As in other studies, the uniform and exponential 

distributions are used to model the values of n and t(n). 

The allocation algorithms are evaluated and compared using mean response times and schedul­

ing effectiveness, and &imess curves. The fairness curves display the average turnaround times as 

fimctions of n under load levels of interest, and the scheduling effectiveness measures the ability of the 

algorithms to utilize the processors (avoid fi-agmentation). 
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1.6 Problem Summary 

The folding method, the job selection criteria, the system load, and woHdoad characteristics are 

fundamental &ctors that influence system performance under space sharing job scheduling policies. 

The goals of this research were to: 

1) Investigate adaptive limited folding static space sharing. 

2) Compare no folding, unlimited folding, and limited folding static space sharing. 

3) Compare dynamic schemes that reduce job waiting times by executing many jobs simulta­

neously (including the promising previously proposed dynamic equipartitioning policy), 

dynamic schemes that limit the number of active jobs, and promising static schemes. 

4) Study the effect of giving priority to shorter jobs and jobs with smaller processor requests 

on the performance of static and dynamic space sharing. 

No folding and unlimited folding are compared in the next chapter. Adaptive static space 

sharing that supports limited folding is studied in Chapter 3. Dynamic space sharing policies are the 

subject of Ch^ter 4. Finally, Chapter 5 contains a sununary of the conclusions and recommendations 

for future work. 
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2 TRADITIONAL AND UNLIMITED FOLDING STATIC SPACE 

SHARING POLICIES 

In this ch^ter, several no folding and unlimited folding static space sharing policies that sup­

port topology-independent program-based allocation are studied and compared. The results of a de­

tailed simulation study of their performance show that unlimited folding is superior to no folding under 

high system loads when the efBciency of ^plications increases significantly with a decrease in the 

number of processors allocated. However, when the qiplications are highly efScient, no folding is su­

perior under most or all loads, depending on workload characteristics. The results also show that the 

job selection criteria has a significant effect on performance within both policy classes. Several algo­

rithms based on the assumption that the execution times of applications on the nimiber of processors 

they request can be estimated in advance are also studied. The results show that giving priority to 

shorter jobs can improve mean response times significantly. 

2.1 Introduction 

The two basic methods for implementing static space sharing in parallel systems are machine 

partitioning and program-based partitioning. In the machine partitioning method, the target system is 

subdivided into disjoint partitions independently of individual applications, and an application is com­

monly allocated a single distinct partition. In program-based partitioning, distinct partitions are created 

for applications as they are serviced. 

Topology-independent program-based space sharing has two major advantages over machine 

partitioning that assigns an ^plication to a single partition (the common mapping approach). First, it 

avoids internal processor fi-agmentation. Second, a job can be allocated any number of processors. 
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Significant performance improvement can result under moderate loads, when free machine partitions 

are not likely to be allocated soon. 

Two classes of program-based space sharing policies are considered in this ch^ter. In the 

(traditional) no folding class of policies, a parallel program is always allocated the nimiber of proces­

sors it requests. This niunber can be determined at compile-time, and several data access optimizations 

can be supported. For example, in the Rice University FORTRAN D compiler for distributed-memory 

machines, programs are compiled for a specific number of processors, and fimdamental data distribu­

tion constructs and communication overhead reduction techniques that depend on this number are sup­

ported [Himandani 92]. 

In the unlimited folding class of policies, a job can be allocated any number of processors that 

does not exceed its processor request. The optimizations that are possible when the number of proces­

sors on which the program will run is fixed prior to execution (e.g., static data distribution) can still be 

supported. The compiler must generate object code that can be bound to the allocated processors. Such 

model is supported by MITs Id compiler for their Monsoon dataflow system. The object code it gen­

erates can run on any number of processors [Hicks 93]. 

With unlimited folding, a processor does not remain idle if there is a pending allocation re­

quest, and the increase in efiBciency that typically results when a job executes on fewer processors is 

exploited. However, a job may be allocated a very small fi°action of the number of processors it re­

quested, causing it to complete much later than if it waits until that many processors are available. Be­

cause a folded q)plication can not be allocated additional processors (processor allocation is fixed in 

static space sharing), folding fragmentation results. This type of firagmentation exists when processors 

are fi'ee and there is one or more folded applications. As released processors are likely to remain unal­

located for a long time under moderate loads, high folding fi'agmentation and poor system utilization 

can result. 

Several policies that support unlimited folding and no folding were the subject of recent stud­
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ies. The unlimited folding policy FF+FIFO, described in more detail in the preceding chapter, is com­

pared to FF, equipartitioning, and other less promising disciplines in [Ghosal 91], It produced the best 

performance, including when equipartitioning uses the best number of partitions considered in the 

study. The performance parameter is the throughput to mean response time ratio, and the workload is a 

mix of a small set of five applications. An application is allocated a single partition in the equipartition­

ing policy, but it is allocated at most the smallest number of processors that maximizes the 

speedup*efiBciency parallel execution cost fimction in FF and FF+FBFO. 

There are several issues with this study. First, a job is not allocated the number of processors 

that minimizes its execution time under FF and FF+FIFO, including when the load is moderate and firee 

processors are likely to remain unallocated for a long time. Second, the speedup curves are difficult to 

estimate for many ^plications. The execution time of a program can strongly depend on the input, and 

numerous applications have dynamic structures. Third, it is intuitive that superior scheduling algo­

rithms can be designed if the execution curves are known. For example, a job may wait until more 

processors are available when waiting leads to better performance. 

In the static space sharing policy proposed by Zahoijan and McCann [Zahoijan 90], an appli­

cation is allocated at most the smallest number of processors that maximizes its speedup, and folding is 

unlimited. When a job terminates, a released processor is assigned to the waiting program whose exe­

cution time will be reduced the most if it receives an additional processor. The execution time of an 

^plication that is allocated no processors is set to a very large value. Consequently, waiting applica­

tions are allocated one processor each first. Zahoijan and McCarm note that this property had a critical 

influence on the performance of the scheme. It is assumed that the execution times on one processor 

and the speedup curves of applications are known. 

There are two issues with this policy; (1) applications that have long execution times are given 

priority, and (2) servicing is eager (the maximum number of waiting applications are serviced when 

processors are released). Many applications are expected to be allocated a small number of processors, 
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and released processors are likely to idle for a long time because the waiting queue is expected to be 

short. An advantage of this policy over FF+FIFO as implemented by Ghosal, et al., [Ghosal 91] is that 

a program can be allocated the number of processors that minimizes its execution time. An eager policy 

is compared to other disciplines that support unlimited folding in this study. It produces the worst 

scheduling effectiveness and mean response times. The results also show that giving priority to longer 

jobs can degrade performance significantly. 

The traditional FF and FCFS policies were compared in a simulation study by Abraham and 

Padmanabhan [Abraham 92], where FF produced significantly shorter mean response times. The ad­

vantage of FF is that it can allocate processors to any waiting request, whereas the head of the FIFO 

waiting queue must be serviced first in FCFS. FF can yield superior system utilization. These policies 

do not support ^plication folding. 

The study reported in this chapter has two main goals. The first is to compare the no folding 

and unlimited folding approaches to determining the number of processors to allocate to applications. 

Under both approaches, the role of the job selection criteria is investigated. The second goal is to de­

termine how allocation should depend on the execution times; that is, should short or long jobs be given 

priority?. 

2.2 Allocation Policies 

The target parallel computer consists of P identical processors, and allocation is topology-

independent. It is assumed that an application requests, upon arrival, a number of processors, denoted 

by n, fi-om the allocation algorithm. 

2.2.1 No Folding Allocation Policies 

An ^plication is always allocated the number of processors it requested. The following poli­

cies are studied: 
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First Come First Served (FCFS); Allocation requests are serviced in their order of arrival. The ad­

vantage of this policy is its feimess. However, it is expected to produce poor scheduling effectiveness 

and mean response times. Processors remain idle if the application at the head of the waiting queue re­

quests more than the number of free processors, even though there may be a waiting request that can be 

satisfied. Algorithms based on the first-fit allocation strategy solve this problem by allowing waiting 

requests to be serviced out of arrival order. 

First Fit (FF): The waiting queue is FIFO. A new application waits at the tail of the queue if the num­

ber of fi'ee processors, FP, is less than its processor demand. When processors are released, the waiting 

queue is scanned and the first job whose processor requirement does not exceed FP is serviced. Scan­

ning continues until FP is zero or until all jobs in the queue have been examined. Processors do not idle 

if their number is at least equal to the processor demand of a waiting appUcation. 

First Fit Decreasing Size (FFDS); The waiting jobs are sorted in the non-increasing order of their 

processor requests, and allocation is as in FF. The goal is to increase the number of busy processors by 

giving priority to the largest job that can fit. 

First Fit Increasing Size (FFIS): The waiting jobs are sorted in the non-decreasing order of their proc­

essor requests, and allocation is as in FF. The goal is to reduce the mean response times by increasing 

the number of jobs nuining simultaneously. Intuitively, FFIS discriminates against large jobs more than 

the previous algorithms. 

Policies based on the best-fit strategy are not considered as best-fit appears to offer only a 

slight advantage [Tuomenoksa 85] or some disadvantage [Ghosal 91] over first-fit. 

2.2.2 Unlimited Folding Policies 

A job may be allocated any number of processors that does not exceed its request. The four 

algorithms that result fi'om the following modification to the no folding algorithms are included. An 

arriving job is allocated min(«,/7') processors if fT^O, otherwise it waits. At a job completion, the cor­
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responding no folding algorithm is run. If processors are still free they are allocated to the head of the 

waiting queue. The resulting policies are named FCFSUF, FF+FIFO [Ghosal 91], FFDS+FIFO, and 

FFIS+FIFO respectively. 

In addition, the following policy, denoted by EPFP (from Even Partitioning of Free Proces­

sors), is studied. The waiting queue is FIFO. As in the other unlimited folding policies, a new applica­

tion is allocated tnin(n,/7) processors if FP^O, otherwise it waits. Released processors are divided as 

evenly as possible among the waiting ^plications. When the number of jobs does not divide FP, the 

excess processors are allocated to the earliest arrivals, one to each. Applications are serviced eagerly; 

that is, the maximum number of waiting applications is serviced when a job terminates. 

2.3. Results 

The algorithms are compared using mean response times and scheduling effectiveness, and 

fairness curves. 

2.3.1 Simulation Parameters 

In the simulation experiments, the machine consists of P=64 identical processors. A new job is 

characterized by three independently-generated parameters: the requested number of processors «, the 

execution time and the efSciency i^n). Two distributions are used to model the values of n: the 

uniform over the interval [2,P], and the truncated exponential with a mean of IS and 2^^. This mean 

was chosen because it produced worse mean response times than other values in several simulation ex­

periments. The values of t{n) are distributed uniformly over the interval [10,200]. A pseudo-random 

variable distributed uniformly over [0.4,0.9] produces the values of ^(n) under MISP speedup. The 

efficiency values that correspond to a serial fraction greater than 0.5 are discarded. The character­

istics n, t(n) and ^n) are used in computing die execution time when the job is folded, as seen in 

Chapter 1. 
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During each run, the simulator generates 8500 jobs. To ignore startup effects, the performance 

data obtained for the first 500 jobs is discarded. 

2.3.2. Scheduling EfTectiveness 

This performance parameter measures the ability of the algorithms to avoid processor fragmen­

tation. Utilizing a large percentage of the PEs is essential to the performance of parallel computing 

systems as both program efficiency and scheduling effectiveness must be high for the system efficiency 

to be high. The definitions of system efficiency and scheduling effectiveness are given in Chapter I. 

The effectiveness values shown below have relative errors below 1% (tliey are typically much less than 

1%) when the confidence interval is 95%. 

2.3.2.1 The no folding policies 

A comparison of the mean scheduling effectiveness of the no folding policies is shown in Fig­

ures 2.1 and 2.2. Their general ordering, from best to worst, is; FFDS, FF, FCFS, and FFIS. The mean 

-• FCFS 

•9—FF 

— FFDS 

^—FFIS 

0.6 1 1 1 1 1 1 1 1 
0.0001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Load Parameter 

Figure 2.1: Mean scheduling effectiveness as a function of the load parameter for the no 
folding policies, uniform size and execution time distributions. 
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0.6 1 1 1 1 1 1 1 1 
0.0001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Lx>ad Parameter 

Figure 2.2; Mean scheduling effectiveness as a function of the load parameter for the no 
folding policies, exponential size distribution, uniform execution time distribution. 

effectiveness is high under light loads because it is highly likely that a job is serviced as soon as it ar­

rives. It drops as L increases because of processor fragmentation, which occurs when the number of 

firee processors is less than the processor request of the head of the queue under FCFS, and when it is 

smaller than the request of each waiting job under the first-fit policies. When the requests are exponen­

tially distributed, fragmentation is less severe and the mean Sg is higher because most jobs are small. 

The effectiveness curves of FFDS and FF increase under heavy loads because the number of 

waiting jobs and the probability of finding a job that fits are higher. This also explains why the effec­

tiveness of FFIS declines slowly (Figure 2.1) or increases (Figure 2.2) under heavy loads. 

2.3.2.2 The unh'mited folding policies 

These policies do not differ much in their scheduling effectiveness (approximately 5% at most), 

as can be seen in Figures 2.3-2.5, and they are less effective than the no folding policies, except under 

very high loads (e.g.. Figures 2.6 and 2.7). Their effectiveness curves drop more rapidly as the system 
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EPFP 
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Figure 2.3: Mean scheduling effectiveness as a function of the load parameter for the unlimited 
folding policies, exponential size distribution, imiform execution time distribution, 
linear speedup 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 
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Figure 2.4; Mean scheduling effectiveness as a function of the load parameter for the unlimited 
folding algorithms, uniform size and execution time distributions, MISP speedup 
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Figure 2.5; Mean scheduling effectiveness as a function of the load parameter for the unlimited 
folding algorithms, exponential size distribution, uniform execution time 
distribution, MISP speedup 
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Figure 2.6: Mean scheduling effectiveness as a fimction of the load parameter for the FF 
poUcies, uniform size and execution time distributions. 



www.manaraa.com

39 

e 
a 
n 

S 
c 
h 
e 
d 
u 
I 

n 
g 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 

Load Parameter 

Figure 2.7; Mean scheduling effectiveness as a function of the load parameter for the FCFS 
policies, uniform size and execution time distributions. 

is loaded, reach minimum values at medium load levels, then rise rapidly as the load increases further. 

When the load is very light, the effectiveness is high because most appUcations are not folded and the 

factor by which an application is folded is small, on average. As the load increases, the percentage of 

folded applications and the factor by which an application is expected to be folded also increase; that 

is, the mean actual folding factor increases with the load (e.g.. Figure 2.8). This factor is the average, 

over all jobs, of the ratio W/PQ/, where n is a job's si2s and Pgi the number of processors it is allocated. 

Under medium system loads, the probability that there are no pending requests when proces­

sors are released is high, released processors are likely to remain idle for a long time, and high folding 

fragmentation and poor scheduling effectiveness result. Note that the mean length of the waiting queue 

is shorter under imlimited folding than under no folding. Under heavy loads, the probability that there is 

a pending request is higher, released processors are likely to be allocated sooner, and the scheduling 

effectiveness increases with the load. 

FCFS 

FCFSUF(Lin) 

FCFSUF(MISP) 
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Figure 2.8: Mean actual folding factors as a function of the load parameter for the unlimited 
folding policies, uniform size and execution time distributions, MISP speedup 

In FCFSUF, the ^plication at the head of the waiting queue does not, unlike in FCFS, wait 

until the exact number of processors it requested is available, and the scheduling effectiveness is not 

much different from that of the unlimited folding FF policies. Because of the absence of the first-fit 

phase, FCFSUF folds jobs less than FF+FIFO, as can be seen in Figure 2.8. Unlike FFIS, which suf­

fers significantly more fragmentation than FF and FFDS, FFIS+FIFO is slightly more effective than 

the other two unlimited folding FF policies. Also, its mean folding fectors are smaller. FFDS+FIFO 

produces the largest mean folding &ctors, and is the least effective FF variant. When compared to the 

other unlimited folding policies, EPFP, which services the maximum number of waiting jobs, results in 

much higher mean actual folding &ctors and lower scheduling effectiveness under high loads. 

2.3.3 Mean Response Times 

The typical user of a general purpose parallel machine is unlikely to be directly interested in 

the scheduling effectiveness or system throughput. To this user, the expected response time is far more 
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important. In this section, the mean response times of the policies are compared. The values shown 

have relative errors that do not exceed 3% when the confidence interval is 95%. 

2.3.3.1 The no folding policies 

FFDS and FF produced shorter mean response times than FCFS and FFIS (Figures 2.9 and 

2.10) because of their ability to better avoid processor fragmentation (Figures 2.1 and 2.2). Although 

the goal of FFIS is to reduce the mean response times by simultaneously executing more applications, 

it produced longer mean response times than FF and FFDS, including when most jobs are small (the 

sizes are exponentially distributed), because its effectiveness is poorer. As expected, FCFS has the 

worst performance due to the high Segmentation it induces. The performance of the policies is practi­

cally the same under low loads (L<0.3), when ^plications seldom have to wait. 

1505 -r 

0.0001 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Load Parameter 

Figure 2.9; Mean response time as a function of the load parameter for the no folding 
algorithms, uniform size and execution time distributions 
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Figure 2.10: Mean response time as a function of the load parameter for the no folding 
algorithms, exponential size distribution, uniform execution time distribution 

2.3.3.2 The unlimited folding policies 

A study of the mean response times of the unlimited folding policies (Figures 2.11-2.13) leads 

to the following observations: 

1) The unlimited folding variants of the no folding policies differ much less in the mean re­

sponse times they produced. Folding reduced the importance of the job selection criteria, and it 

has a strong influence on performance (see also Figures 2.6 and 2.7). 

2) As the performance of EPFP is poor, the eager servicing of applications, recommended in 

[Zahoijan 90], is a poor job selection strategy. 

3) There is positive correlation between the mean actual folding factors and the mean response 

times. Less folding is better. 

4) Although FFDS is the best no folding first-fit policy, FFDS+FDFO is the worst unlimited 

folding first-fit policy because it folds jobs more than FF+FIFO and FFIS+FIFO (e.g.. Figure 

2.8). 
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Figure 2.11: Mean response time as a fimction of the load parameter for the unlimited folding 
policies, uniform size and execution time distributions, linear speedup 
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Figure 2.12: Mean response time as a function of the load parameter for the unlimited folding 
policies, uniform size and execution time distributions, MISP speedup 
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Figure 2.13: Mean response time as a function of the load parameter for the unlimited folding 
policies, exponential size distribution, imiform execution time distribution, MISP 
speedup 

5) FCFSUF is slightly superior to FF+FIFO. FCFSUF is more effective, and its mean actual 

folding factors are smaller. This is unlike FCFS, which is much worse than FF. 

6) Although FFIS is worse than FF and FFDS, FFIS+FIFO is superior to FF+FIFO and 

FFDS+FEFO because it folds jobs less, on average, while achieving comparable scheduling ef-

7) When the efiGciency of applications increases significantly with a decrease in the number of 

processors they are allocated (e.g., MISP speedup model), no folding is better than unlimited 

folding under low to moderate loads but unlimited folding is superior under high to very high 

loads, as can be seen in Figures 2.14 and 2.15. However, when linear speedup is assumed, no 

folding is superior to unlimited folding under most or all system loads, depending on the distri­

bution of the processor requests, as can be seen in the same figures. 

For example, FF starts outperforming FF+FIFO at L«0.75 under linear speedup in Figure 

fectiveness. 
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Figure 2.14; Mean response time as a ftmction of the load parameter for the FF policies, 
uniform size and execution time distributions 
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Figure 2.15; Mean response time as a function of the load parameter for the FF policies, 
exponential size distribution, uniform execution time distribution 
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2.14, whereas the crossover load level in the same figure is ^proximately 0.55 under MISP speedup. 

The dependence of the crossover load levels on the distribution of job sizes is also illustrated in Figures 

2.14 and 2.15. Under linear speedup, for example, FF outperforms FF+FIFO across all loads in Figure 

2.15, but FF+FIFO is better than FF under heavy loads in Figure 2.14. 

As the efficiency of parallel jobs normally increases when the number of processors they are 

allocated decreases, unlimited folding is expected to outperform no folding significantly under high to 

very high loads, but no folding is expected to be superior under light to medium loads. 

Although a folded job begins execution sooner, it may complete later than if it waits for more 

processors to become available, depending on its starting time and the number of processors it is allo­

cated. Superior scheduling algorithms can be designed if the execution times as functions of processor 

allocation are known a priori. For example, the algorithm can ensure that a folded application does not 

complete later than it would if it waits for the number processors it requested to become available. 

2.3.4 Fairness 

A fairness curve gives the average response times as a fimction of the job size (i.e., processor 

request) at a load level of interest. The job size is chosen because it is the sole job characteristic used in 

making the allocation decisions. Different criteria should be used if other characteristics are utilized. 

There is a tradeoff between &imess and performance. FCFS is relatively feir. The mean turn­

around times of large jobs are not much longer than those of small jobs (see Figures 2.16 and 2.17). 

However, its mean response time performance is poor under medium to high loads. The performance of 

FF and FFDS is significantly better than that of FCFS, but they are not as fair. For example, when the 

sizes are exponentially distributed, the turnaround times of large jobs are considerably longer than 

those of small jobs under the three no folding FF variants (Figure 2.17). Based on the three perform­

ance parameters, FFIS and FCFS are poor no folding policies. 
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Figure 2.16: Average turnaround time as a function of the job size for the no folding policies, 
uniform size and execution time distributions, L=0.6 
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Figure 2.17; Average turnaround time as a function of the job size for the no folding policies, 
exponential size, uniform execution time, L=0.6 
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In general, the mean response times under the unlimited folding policies increase significantly 

with the job size (Figures 2.18-2.20) because larger applications are typically allocated a smaller frac­

tion of the number of processors they requested. Even FFDS+FIFO, which gives priority to larger jobs, 

and FCFSUF discriminate against large jobs considerably. Under FCFSUF, large jobs have signifi­

cantly shorter turnaround times than under FFIS+FIFO when the sizes are distributed uniformly and 

the load is high (Figure 2.19), even though FFIS+FIFO produces the shortest mean response times. 

However, the &imess curves of FFIS+FIFO and FCFSUF do not differ significantly when the sizes are 

exponentially distributed (Figure 2.20). Overall, FCFSUF has the best fairness characteristics. 

In the fairness figures (Figures 2.16-2.20), the confidence interval is 95% and the maximum 

relative error is 5% when the uniform job size distribution is used, but they are 90% and 10%, respec­

tively, under the truncated exponential job size distribution. 
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Figure 2.18: Average turnaround time as a function of the job size for the unlimited folding 
policies, uniform size and execution time distributions, MISP speedup, L=0.6 
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Figure 2.19: Average turnaround time as a function of the job size for the unlimited folding 
policies, uniform size and execution time distributions, MISP speedup, L=0.9 
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Figure 2.20: Average turnaround time as a fimction of the job size for the unlimited folding 
policies, exponential size, uniform execution time, MISP speedup, L=0.9 
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2.4. Other Policies 

The goal of studying these policies is to estimate the improvement in average response times 

that could be expected when t{n) is known a priori. 

First Fit Increasing Total Demand (FFITD); Waiting jobs are sorted in the non-decreasing order of 

their total processing demand, defined as mt{n). Job selection and allocation are as in FF. This no 

folding algorithm produced shorter mean response times than FFIS but performed worse than FF and 

FFDS, as can be seen in Figure 2.21. 
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Figure 2.21; Mean response time as a function of the load parameter, uniform size and 
execution time distributions 

Unlimited folding Smallest Total Demand First (STDFUF); Waiting applications are sorted in the 

non-decreasing order of their total processing demand. The head of the queue waits until there is one or 

more fi-ee processor. When serviced, it is allocated niin(n,i<P) processors. A new job is allocated 

min(M,i7') processors if FP>Q. It waits if FP=(i. 
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order of the values of t{n), and allocation is as in STDFUF. 

Unlimited folding Longest Job First (LOJFUF): Waiting jobs are sorted in the non-increasmg order 

of the values of tin), and allocation is as in STDFUF. 

The mean response times of STDFUF, SHJFUF, and LOJFUF are compared to those of 

FCFSUF in Figures 2.22-2.24. In Figure 2.22, the execution times are modeled by a truncated expo­

nential distribution with a mean of 10 and an interval of [1,100], LOJFUF performed poorly under 

heavy loads and MISP speedup, but SHJFUF and STDFUF outperformed FCFSUF. These results 

show that; (1) a reduction in mean response times can be achieved under heavy loads when shorter jobs 

are given priority, and (2) giving priority to longer jobs can lengthen the mean response times signifi­

cantly. Note that the reduction in mean response times associated with SHJFUF and STDFUF is 

smaller than their degradation associated with LOJFUF in Figures 2.22-2.24. If the execution times are 

not estimated adequately performance can degrade, as suggested by the poor mean response times of 
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Figure 2.22 ; Mean response time as a fimction of the load parameter, MISP speedup, uniform 
size distribution, exponential execution time distribution 
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Figure 2.23 : Mean response time as a flmction of the load parameter, MISP speedup, uniform 
size and execution time distributions 
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LOJFUF. Moreover, the degradation can be severe under very heavy loads, as indicated by the results 

displayed in Figure 2.22. 

2.5 Conclusions 

The efficiency of a parallel application typically increases significantly when the number of 

processors it is allocated decreases, and it is often worse than that predicted by speedup curves of the 

MISP type when n is high. Consequently, unlimited folding is expected to be significantly superior to 

no folding under high system loads. However, it is expected to be inferior to no folding under moderate 

loads because of the high processor fiagmentation it can produce. 

When the execution times of applications are not known a priori, FCFSUF is the best policy 

considered in this study under heavy loads, but FFDS and FF are superior under moderate loads. When 

compared to FCFSUF, FFIS+FIFO can produce slightly shorter average response times, but it can dis­

criminate against large jobs significantly more than FCFSUF under heavy loads. If the values of t{n) 

are known, giving priority to shorter jobs can improve performance. However, If these values are esti­

mated poorly performance can degrade significantly, as iadicated by the poor mean response times of 

LOJFUF. 

FF+FIFO outperformed FF in [Ghosal 91]. However, the results of this study show that FF 

(and FFDS) can outperform FF+FIFO. FF+FIFO suffers high processor fiagmentation under most 

load levels, but it can outperform FF under high loads for two reasons; (1) it exploits the increase in 

efficiency that commonly results fiom folding, and (2) fiagmentation is less severe when the load is 

high. 

When a job completes, the unlimited folding EPFP algorithm services the maximum number of 

waiting applications. This eager servicing of requests in static space sharing, recommended by Zahor-

jan and McCann [Zahoijan 90], can lead to poor performance. EPFP is the worst unlimited folding 

policy studied in this chapter. 
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The results of this study indicate that increasing the degree to which a job is folded with the 

system load should be superior to no folding and unconstrained folding. Such a strategy should produce 

superior system utilization, while exploiting the efficiency advantage of folding. 
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3 ADAPTIVE STATIC SPACE SHARING POLICIES 

No folding static space sharing job scheduling disciplines do not take advantage of the in­

crease in efficiency that typically results when a job is allocated fewer processors, and they can induce 

high processor fi^gmentation because applications wait until they can be allocated the number of proc­

essors they requested. Their mean response times start increasing sharply at load levels significantly 

smaller than one. The level is approximately 0.6 for FCFS and FFIS and 0.7 for FF and FFDS in Fig­

ures 2.9 and 2.10. The unlimited folding poUcies exploit the efficiency advantage of folding, but they 

can suffer considerably more overall fragmentation under most load levels because of folding fragmen­

tation. The fragmentation problem is not severe under very heavy loads when released processors are 

likely to be allocated immediately or soon after their release. 

As low processor fragmentation is achieved without folding under moderate loads but with un­

limited folding under very high loads, superior performance should result if the maximum degree to 

which jobs are folded increases with the load. In this chapter, adaptive folding is investigated with the 

goal of reducing fragmentation and mean response times in topology-independent static space sharing. 

Several program-based algorithms that implement this strategy but differ in the folding method and the 

job selection criteria are studied. Detailed simulation is used to compare them to first-fit and FF+FIFO. 

The results show that adaptive folding offers substantial performance advantage over no folding and 

unlimited folding. It can produce higher and more stable system utilization and significantly shorter 

mean turnaround times. Moreover, the performance of the best algorithm proposed (Multifolding First 

Fit) is only slightly sensitive to the order in which ^plications are serviced. Its performance did not 

improve significantly when the shortest job, the job with the smallest processor request, and the job 

with the smallest total processing demand were given priority. 
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3.1 Introduction 

The methcxl used in determining the number of processors to allocate to parallel ^plications 

strongly influences system performance under static space sharing, as seen in Chapter 2. It has a strong 

effect on fi-agmentation and q)plication efiBciency. 

The target system is subdivided into partitions of equal size and an application is permanently 

assigned to a single partition in several recent studies of static space sharing policies [Ghosal 9I][Naik 

93b][Setia 93]. The results show that performance improves significantly if the size of the partitions 

decreases when the system load increases under both uniprogrammed [Ghosal 9I][Naik 93b] and mul-

tiprogrammed equipartitioning [Setia 93], Several partition sizes were considered. However, no algo­

rithm that determines the size as function of the system load is used or proposed in these studies. 

Moreover, the issue of how to dynamically change it, while maintaining equipartitioning, in response to 

load changes in these static allocation strategies is not dealt with. 

Decreasing the size of the partitions when the load increases has several benefits. By allocating 

a large number of processors to applications under moderate loads, reasonable system utilization and 

mean response times can be achieved. Applications that request a large number of processors are allo­

cated a high fraction of their request, and they do not take too long to complete. However, because 

small ^plications are also allocated large partitions under moderate loads internal processor fi'agmen-

tation can be high. When the partitions are smaller, under heavier loads, system utilization is not likely 

to suffer significantly because there are more jobs in the system (i.e., more partitions can be allocated). 

Moreover, reducing the partitions' size reduces internal fragmentation and improves the execution ef­

ficiency of more q)plications. System efficiency may increase monotonically and significantly with the 

system load when the size of the partitions increases concurrently. Folding is assumed in adaptive par­

titioning. An application executes on the number of processors in the partition it is allocated, which can 

be less than the application's processor request. 

High external fragmentation can result when a program is not allocated more than one parti­
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tion. For example, in a machine with P processors a job that requests P-l processors is allocated only 

PI2 processors when there are two machine partitions, even when the second partition is free and there 

are no other pending allocation requests. Internal and external fragmentation depend on the distribution 

of processor requests. However, all applications request P processors in [Setia 93], and a small set of 

five applications that request 1,2,4,8, andP=16 processors is used in [Ghosal 91]. 

Topology-independent program-based partitioning avoids the internal firagmentation problem 

and can reduce external fragmentation because applications may be allocated the exact number of 

processors they request. It is again assumed that a new application requests a number of processors, n, 

from the allocation algorithm. 

In addition to the no folding and unlimited folding methods for determining the number of 

processors to allocate to applications in program-based static space sharing, limited folding can be 

used. Folding is limited if an application waits until it can receive at least some number, not necessarily 

fixed, of processors. Recall that folding is unlimited when the lower limit is one processor. 

In [Sevcik 89], it is shown that limited folding can improve performance significantly under 

heavy loads. In the workload model used, detailed knowledge of application parallelism is assumed and 

the overhead of parallel execution is due to load imbalances within applications. The speedup of a job 

is linear when the variance of its parallelism is zero. Otherwise, the speedup is sublinear. An applica­

tion is not folded when its parallelism variance is zero, but it is folded by a &ctor that is an increasing 

function of the variance and system load when the variance is greater than zero. An issue with this 

study is the assumption that parallelism characteristics are known in detail. The results in this disserta­

tion are different in that they show that limited folding is also superior to no folding when the applica­

tions have linear speedup. 

FF, FCFS, and a limited folding policy that uses a fixed maximum folding factor were com­

pared in [Abraham 92], A parallel task waits until it can be allocated at least 1/3 or 1/4 of the number 

of processors it requested in the limited folding policy. These values produced good mean response 
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times. FF outperformed FCFS, but the limited folding policy yielded the shortest mean response times. 

In the limited folding scheme proposed and compared to equipartitioning in [Naik 93b], a job 

waits until it can receive at least the minimiun of its processor request and a fixed number of proces­

sors. When a job terminates, released processors are divided as evenly as possible among waiting ap­

plications under this constraint. The fixed number of processors used (32 processors) is not explained. 

It presumably gave good mean response times under the system and workload models used. The 

scheme outperformed fixed equipartitioning across a broad range of system loads, including when the 

best partition size considered in the study is used. 

An issue with the last two limited folding policies is whether the maximum folding fector, 

^^max> should be fixed. Assuming linear speedup, for example, and a policy that does not support 

folding, an ^plication that must wait is not expected to start execution before r*Tg time units. There­

fore, it can be folded by 1+r without changing its expected completion time. The quantities Tg and r*Tg 

are the expected execution time and residual lifetime of an application that is allocated the number of 

processors it requested. The application can be folded by if it must wait for a job that is folded 

hyfm- Thus, the folding fector should increase with the load and depend on the distribution of the exe­

cution times. For example, r=\ for the exponential distribution, rw2/3 for the uniform distribution over 

[Tmin,Tmax] when Tmin/Tmax is small, and r=l/2 for constant execution times. In general, l/2<r<l. 

Folding therefore should be greater when the execution times are distributed exponentially than when 

they are distributed uniformly, for example. As the series converges to when r is 

less than one, a fixed maximum folding &ctor can be expected to produce good performance under 

high loads and a specific execution times distribution. 

The expected residual lifetime of a job folded by the same factor is shorter under MISP 

speedup than under linear speedup because of the increase in efSciency that results firom folding. How­

ever, to estimate the &ctor by which an application can be folded without changing its expected com­

pletion time the ^plication's execution times as fimction of the number of allocated processors should 
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be known. Nonetheless, the best folding &ctor depends on the load level and the efiGciency of applica­

tions under MISP speedup. The improvement in the performance of equipartitioning when the number 

of partitions increases with the system load [Chosal 91][Naik 93b][Setia 93] demonstrates that folding 

should increase with this parameter. Moreover, the comparison of no folding and unlimited folding in 

Ch£q)ter 2 and the results in [Sevcik 89] show that folding should increase with the workload ineffi­

ciency and the load. 

3.2 Allocation Policies 

When job execution times as fimction of processor allocation are not known, as it is assumed 

in this research, the best folding &ctor can not be determined. Consequently, two methods, based on 

first-order statistics, are used to compute the maximum folding &ctor, PF^(jx- The first 

flmax, is determined as follows. A worst-case estimate of the time needed to finish the jobs currently in 

the system is [Pci/(Se*P)'\*Te time units {Pd is the total processor demand of the jobs). Assuming high 

scheduling effectiveness (•S'e»l), an application is expected to complete within this time if it is folded by 

at mostflmcaf^PdlP'\- The assumption that 5ewl is validated by the simulation results. In this method, 

the completed fi'action of the executing jobs is ignored. 

The second maximum folding fector,is equal to flnuoci\-f)NrlPu, where Nf. is the 

total number of processors requested by the executing eqjplications and P^ is the number of busy proc­

essors. The ratio NfJPu is the mean current folding fector, and {\-r)NrlPu corresponds to an estimate 

of the completed fiction of the active applications. 

The following limited folding policies are studied: 

Folding FCFS (FECES); The head of the FIFO waiting queue or a job that arrives while the queue is 

empty is allocated min(fP,rt) fi-ee processors if their number FP > \nlFFniax\- When FFtnaif^\, the 

traditional FCFS results. The unlimited folding variant is obtained when an application can be allo­

cated a single processor. 
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Folding First Fit (FFF): A new job waits in a FIFO queue until it can receive at least \nlFFmcD^ 

processors. When selected for service, a job is allocated vmiFP,n) processors. 

Folding Smallest Job First (FSJF): This is a variant of the last algorithm. It differs in that waiting 

jobs are sorted in the non-decreasing order of their processor demand. The goal is to improve the mean 

response times by executing more simultaneously. 

Multifolding First Fit (MFFF): The waiting queue is FIFO. During an allocation scan of the queue, a 

job is selected for service if {x+ri)/FP < where x is the total processor requirement of the jobs 

selected so for. At the end of a scan, the selected jobs are folded by FFacf=x/FP. Each is allocated ap­

proximately (due to arithmetic errors) n/FFact processors. Multifolding algorithms differ from the re­

maining algorithms in that they may fold multiple applications per allocation scan. 

Multifolding Smallest Job First (MFSJF); This is a variant of the last algorithm where waiting re­

quests are sorted in the non-decreasing order of their processor requirement. The goal is again to im­

prove the mean response times by executing more jobs simultaneously. 

When FF,|,3x is load-dependent, there is an allocation scan per job arrival or departure. 

3.3 Results 

The allocation policies are compared using mean response times and scheduling effectiveness, 

and &imess curves. 

3.3.1 Simulation Parameters 

The target machine consists of P=64 identical processors, and 2^^. The uniform and the 

trimcated exponential distributions are used to model the job processor requests (i.e., the values of n) 

and the execution times on n processors. When the requests are modeled by the truncated exponential 

distribution, a mean of 15 is used. The interval of the execution times on the requested number of proc­

essors is [10,200] when they are distributed uniformly. It is [1,100], the mean is 10, and the resulting 
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true mean is approximately 11 under the truncated exponential execution times distribution. A pseudo­

random variable distributed uniformly over [0.4,0.9] models the initial job e£Bciency values under 

MISP speedup. However, the values that correspond to a serial fi'action greater than 0.5 are ignored. 

The simulator generates 8500 applications per run. To ignore startup effects, the performance 

data of the first 500 jobs is discarded. The nimiber of runs is such that the mean response times ob­

tained have relative errors not exceeding 5% under the 95% confidence interval. The scheduling effec­

tiveness values have relative errors below 1% (they are typically much less than 1%) imder the same 

confidence interval. 

The results shown are for PFmarflmax- second folding fector f2max change the 

mean response times and scheduling effectiveness values significantly, and is less practical because it 

depends on the distribution of the execution times through r. 

3.3.2 Scheduling Effectiveness and Mean Response Times 

3.3.2.1 No folding, unlimited folding, and limited folding 

Adaptive limited folding is superior to no folding and unlimited folding. It produced higher 

system utilization (scheduling effectiveness) and shorter mean response times under the processor re­

quests, execution times, and speedup assumptions considered in this study. For example, the effective­

ness curves of the three first-fit variants FF, FF+FIFO, and FFF are compared in Figures 3.1 and 3.2 

under the uniform execution time distribution and MISP speedup. FFF yielded more stable and higher 

effectiveness. The performance advantage of FFF is less significant in Figure 3.2 because the requests 

are distributed exponentially. Most jobs are small then, and their number, under the same system load, 

is higher than imder the uniform distribution. Both &ctors reduce processor fragmentation in the three 

policies, but the reduction is higher under FF+FIFO and FF. 
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Figure 3.1; Scheduling effectiveness as a function of the load parameter, MISP speedup, 
uniform size and execution time distributions 
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Figure 3.2: Scheduling effectiveness as a function of the load parameter, MISP speedup, 
exponential size distribution, uniform execution time distribution 
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The mean response times of the three first-fit variants when the job sizes and execution times 

are uniformly distributed are compared in Figures 3.3 and 3.4. FFF yielded shorter mean response 

times than FF and FF+FIFO across all load levels. In Figure 3.3, where MISP speedup is assumed, the 

mean response times are 30-40% longer under medium to high load levels when FF+FIFO is compared 

to FFF. The degradation is approximately 30% under Z,=0.4 and L=\, 40% under i=0.6 and L=0.8, 

and 20% under L=0.2 and L=1.2. The advantage of limited folding over unlimited folding is less sig­

nificant under very high load levels because processors are unlikely to remain idle then, even if folding 

is unconstrained. In Figure 3.4, where linear speedup is assumed, the degradation is more significant. It 

is approximately 40% under L=0.2, 60% under X=0.5, 70% under L=0.1, and 50% under L=0.9. FFF 

outperformed FF and FF+FIFO under both linear and sublinear speedup curves. 
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Figure 3.3; Mean response time as a fimction of the load parameter, MISP speedup, uniform 
size and execution time distributions 
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Figure 3.4; Mean response time as a function of the load parameter, linear speedup, uniform 
size and execution time distributions 

The advantage of FFF over FF+FIFO is more moderate in Figure 3.5 than in Figure 3.3 be­

cause most jobs are smaller and their number is higher under the same load level (the processor re­

quests are modeled by the truncated exponential distribution). The degradation in performance pro­

duced by FF+FIFO in Figure 3.5 is approximately 10% under L=OA, 20% under L=0.6, 30% under 

Z,=0.8, and 15% under Z,=1.2. 

Because FFF is more effective than FF, it saturates under higher loads, including when linear 

speedup is assumed (e.g.. Figures 3.3-3.5). The saturation loads are much higher under MSP speedup 

because of the increase in efficiency that results from folding. The mean response time performance 

advantage of FFF over FF is very high under heavy loads. For example, the performance of FF under 

Z,=0.8 is worse than that of FFF under Z=1.2 in Figure 3.3, and the mean response time of FF is ap­

proximately double that of FFF under i=0.7 in Figure 3.3 and under Z,=0.8 in Figure 3.4. 
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Figure 3.5; Mean response time as a function of the load parameter, MISP speedup, 
exponential size distribution, uniform execution time distribution 

Even though FF does not exploit the folding efiSciency improvement &ctor, it is superior to 

FF+FIFO under low to medium system loads and MISP speedup because of its ability to utilize more 

processors. When linear speedup is assumed, FF is better than FF+FIFO under most or all system 

loads, as seen in the preceding chapter. 

3.3.2.2 Limited folding policies 

The mean response times of the five limited-folding poUcies are compared in Figures 3.6-3.9 

under MISP speedup and the four combinations of the execution time and size distributions considered. 

These results show that: 

1) FFF and FFCFS are inferior to MFFF, FSJF, and MFSJF. 

2) The mean response times produced by MFFF, FSJF, and MFSJF do not differ 

significantly. 
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Figure 3.6; Mean response time as a function of the load parameter, MISP speedup, uniform 
execution time and size distributions 

-•—FFF 

-•—FSJF 

-Jt—FFCFS 

X—MFFF 
•jl^MFSJF 

Load Parameter 

Figure 3.7; Mean response time as a function of the load parameter, MISP speedup, uniform 
execution time distribution, exponential size distribution 
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3) FFCFS performs only slightly worse than FFF because the application at the head 

of the waiting queue no longer waits until the exact number of processors it requested 

is available. 

As FFF is not the best limited folding policy, the advantage of adaptive limited folding over no 

folding and unlimited folding is higher than shown in Figures 3.3 and 3.5. 

When linear speedup is assumed, FFF can produce shorter mean response times than MFFF 

and MFSJF (e.g.. Figure 3.10). However, the speedup of parallel applications is typically sublinear, 

and it is often worse than that predicted by an MISP speedup curve, especially when n is high. As a 

result, MFFF is expected to outperform FFF significantly in practice. 
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Figure 3.10: Mean response time as a fimction of the load parameter, linear speedup, uniform 
size and execution time distributions 

MFFF produced lower scheduling effectiveness values than FFF (e.g.. Figures 3.11 and 3.12), 

however it resulted in shorter response times under MISP speedup because it takes more advantage of 

the increase in efiSciency that results from folding. The mean actual folding factors of MFFF are larger 

than those of FFF, as can be seen in Figures 3.13 and 3.14, because MFFF can fold multiple applica-
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Figure 3.11: Mean scheduling effectiveness as a function of the load parameter, MISP 
speedup, uniform execution time and size distributions 
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Figure 3.12; Mean scheduling effectiveness as a function of the load parameter, MISP 
speedup, exponential execution time and size distributions 
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Figure 3.13; Mean actual folding factor as a function of the load parameter, MISP speedup, 
uniform size and execution time distributions 
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Figure 3.14: Mean actual folding factor as a function of the load parameter, MISP speedup, 
exponential time distribution, uniform size distribution 
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tions per aUocation scan. These figures also show that the mean actual folding Actors are larger when 

the execution times are distributed exponentially. FFF outperformed MFFF under linear speedup be­

cause it is more efiective. 

The mean scheduling effectiveness values are suboptimal because of processor fragmentation. 

Fragmentation is low under light loads because applications seldom have to wait, most applications are 

not folded, and the &ctor by which an ^plication is folded is small on average. It is also low under 

high loads because released processors are likely to be allocated immediately or soon after their release. 

The number of waiting applications and the probability that a job will arrive soon increase with the 

system load. 

FFF was also simulated under fixed maximum folding &ctors. The results of these experiments 

(e.g.. Figures 3.15 and 3.16) also show that folding has a very strong influence on performance, and 

the best fixed increases with the load and depends on workload characteristics. Excessive mean 

response times can result under high to very high loads if is ^ small, and the best fixed maxi­

mum folding &ctor is larger when the execution times are distributed exponentially than when their 

distribution is uniform. 

These results confirm that the advantage of limited folding over unlimited folding depends on 

the load and the distribution of the execution times. The mean response times increase relatively more 

under Z,=0.8 than under L=\2 when FFfffg^ increases fi-om its best value to ? in Figures 3.15 and 

3.16. As folding should be lower under the uniform execution times distribution, the relative increase is 

higher in Figure 3.15 than in Figure 3.16. 

A comparison of the mean response times of the adaptive FFF and FFF that uses the best fixed 

FFfffox (FFF-Best Fixed) under MISP speedup and the uniform job sizes distribution shows that they 

do not differ significantly under this workload model (Figures 3.6 and 3.8). 
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Fixed Maxiinum Folding Factor 

Figure 3.15: Mean response time as a fimction of the fixed maximum folding factor for FFF, 
MISP speedup, uniform size and execution time distributions 
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Figure 3.16; Mean response time as a function of the fixed maximum folding &ctor for FFF, 
MISP speedup, uniform size distribution, exponential execution time distribution 
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3.3.2 Fairness 

Sets of curves are used to characterize the &imess of the scheduling policies. Each contains 

the average turnaround times as a fimction of the job processor demand under a load level of interest 

(the processor demand is chosen because it is the sole job characteristic used by the algorithms). FSJF 

causes large jobs to have excessive response times under moderate to high loads, as can be seen in Fig­

ures 3.17 and 3.18. Moreover, its mean response time performance under MISP speedup is slightly 

worse than that of MFFF. MFSJF offers insignificant mean response time performance advantage over 

MFFF, and it has worse fairness characteristics. FFCFS discriminates against large jobs less than 

MFFF, but its mean response times are longer for all job sizes. Based on the three performance pa­

rameters considered, MFFF is more promising than FFF, FFCFS, FSJF, and MFSJF. 

Note that the policies &vor small jobs because they are likely to have shorter waiting and exe­

cution times. It is easier to find enough processors for allocation to these jobs, and they are likely to be 
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Figure 3.17; Mean turnaround time as a fimction of the processor demand, 1=0.6, MISP 
speedup, imiform size and execution time distributions 
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Figure 3.18; Mean turnaround time as a function of the processor demand, Z,=I, MISP 
speedup, uniform size and execution time distributions 

allocated a larger fraction of their processor demand. A comparison of the fairness curves of MFFF to 

those of the no folding and unlimited folding policies studied in Ch^ter 2 shows that they have better 

&imess characteristics. 

3.4 Other Policies 

The goal of studying the following additional multifolding policies is to estimate the improve­

ment in mean response times that may be expected when /(«) is known a priori. They differ from MFFF 

in the sorting order of waiting applications. 

Multifolding Smallest Total Demand First (MFSTDF): Waiting applications are sorted in the non-

decreasing order of their total processing demand, defined as n*t(n), and allocation is as in MFFF. 

Multifolding Shortest Job First (MFSHJF): The waiting jobs are sorted in the non-decreasing order 

of the values of t{n), and allocation is as in MFFF. 
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Multifolding Longest Job First (MFLOJF): The waiting jobs are sorted in the non-increasing order 

of the values of t(n), and allocation is as in MFFF. 

The mean response times of these policies were compared to those of MFFF under MISP 

speedup. MFSTDF and MFSHJF ou^rformed MFFF, but MFLOJF produced longer mean response 

times. However, the performance differences were very small, as can be seen in Figures 3.19 and 3.20, 

and they were statistically insignificant. Increasing the upper bound of the execution times interval in­

creased the performance advantage of MFSTDF and MFSHJF, but the improvement remained statisti­

cally insignificant when the bound was increased to 1000. MFFF is a robust policy in that its perform­

ance is not expected to change significantly if smaller, shorter, longer, or jobs with smaller total proc­

essing demands are given priority. 

Figure 3.19; Mean response time as a function of the load parameter, MISP speedup, uniform 
execution time and size distributions 
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Figure 3.20: Mean response time as a function of the load parameter, MISP speedup, 
exponential execution time and size distributions 

3.5 Conclusions 

Adaptive folding of parallel jobs can substantially improve the performance of parallel sys­

tems. The efiBciency of a parallel application is normally a decreasing flmction of the number of proc­

essors allocated, and it is often worse than that predicted by an MISP speedup curve, especially when 

the physical parallelism exploited is high. For typical applications, and based on the fairness curves 

and mean response times, MFFF, when FFmax~flmca^policy studied in this chapter. 

A fixed maximum folding factor can produce good performance under specific system loads 

and workload characteristics. However, it can degrade performance if it is too small or too large. 

MFFF is a robust policy. It resulted in good performance across the system loads and workload charac­

teristics considered in this study, and its performance did not improve significantly when shorter appli­

cations and applications with smaller total processing demands were given priority. 
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MFFF is superior to FF, FF+FIFO, and the remaining policies studied in Chapter 2, including 

when linear speedup is assumed. This conclusion contradicts the assertion in [Sevcik 89] that no fold­

ing is optimal under linear speedup (constant degree of parallelism in Sevcik's study). The benefits of 

folding can be substantial under linear speedup (e.g.. Figures 3.4) because it can reduce processor 

fiagmentation considerably. 

A fiindamental problem with static space sharing is folding fragmentation, which exists be­

cause released processors are not allocated to folded jobs. Dynamic space sharing solves this problem. 

However, it induces ^plication reconfiguration overhead. MFFF is compared to dynamic space shar­

ing policies in the next ch^ter. 
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4 DYNAMIC SPACE SHARING POLICIES 

In this chapter, several program-based topology-independent dynamic space sharing policies 

are studied and compared. The results of a detailed simulation study of their performance show that the 

policies that reduce waiting times by allowing more ^plications to execute simultaneously are superior 

to those that reduce execution times by restricting the number of active applications. This outcome is 

due to the significant increase in efficiency that typically results when programs execute on fewer proc­

essors. When the applications have linear speedup, the policies that restrict the number of active appli­

cations are superior. Also, the results show that there is a tradeofif between mean response times and 

fairness. Giving priority to jobs with small processor requests can reduce the overall mean response 

times, but it increases the expected response times of large jobs. 

4.1 Introduction 

Dynamic space sharing differs from static space sharing in that the number of processors allo­

cated to ^plications can vary during their execution. However, applications are allocated distinct 

processor subsets, as in static space sharing. The dynamic strategy avoids the folding fiagmentation 

problem that exists under static space sharing, and it can reduce program idle times due to insufficient 

parallelism. Folding fiagmentation is avoided because released processors can be allocated to applica­

tions executing on less than the number of processors requested. To reduce its idle times an application 

may, for example, request processors as it needs them and release those it no longer uses. A major dis­

advantage of dynamic spsice sharing is the overhead induced by processor releases and reallocations, 

specifically context switches, cache reloads, and data migration in distributed-memory and NUMA 

systems. This oveiiiead can offset the benefits of dynamic space sharing [Zahoijan 90], 

Dynamic space sharing policies produced shorter mean response times than traditional process-



www.manaraa.com

79 

based time-multiplexing schemes in several experimental and simulation studies of job scheduling in 

UMA [Tucker 89][McCann 93] and NUMA systems [Maricatos 93]. The context switches associated 

with time-multiplexing are avoided, and significant reductions in cache reloads and synchronization 

delays can result. For example, a process may spend a long time in the suspended state, especially un­

der high system loads, and impede the progress of processes that interact with it under traditional time-

multiplexing schemes, which schedule processes independently of their interactions. 

To address this synchronization problem, Ousterhout [Ousterhout 82] proposed round-robin 

coscheduling. Under this scheme, cooperating processes are assigned to distinct processors, and they 

are dispatched and preempted together so as to avoid waiting for suspended processes. However, co-

scheduling incurs the overhead associated with time-multiplexing, and system utilization can be low 

because a subset of processors idles when it can not execute a complete set of cooperating processes 

during a time-slice. Dynamic space sharing ou^erformed round-robin coscheduling in simulation 

[Zahoijan 90]PLeutenegger 90] and experimental [Markatos 93] studies. 

The fundamental issue in space sharing is determining the number of processors to allocate to 

competing jobs. Allocating a small number of processors typically increases program efBciency and 

decreases the waiting times, but it normally increases the execution times. Consequently, there may be 

a tradeoff between reducing the running times of individual ^pUcations and reducing the overall mean 

response time. 

A few dynamic space sharing schemes have been proposed and evaluated. The number of 

processes is dynamically controlled so that it does not exceed the number of processors and a processor 

is dedicated to the execution of a single process in the process control technique proposed for shared-

memory machines [Tucker 89], Time-multiplexing is avoided. In the prototype implemented on Encore 

Multimax shared-memory multiprocessor, the processors are divided evenly among the jobs under the 

constraint that no application is allocated more than its processor demand. In comparison to perform­

ance imder traditional process-based round-robin scheduling, significant reductions in response times 
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were obtained. For some applications, the improvement was by more than a &ctor of two. 

McCann, et ai, [McCann 93] compared three scheduling policies on a Sequent Symmetry 

shared-memory multiprocessor. They are called Round-Robin job (RRjob), Equipartition, and Dy­

namic. In RRjob, originally proposed in [Leutenegger 90], a job is assigned n processors for a time 

interval t=kln when its turn arrives, where n is the job's maximum process parallelism and k a constant. 

The unassigned processors are given to the job whose turn is next (the maximum process parallelism of 

the ^plications exceeds P/2 in the study). In Equipartition, the target system is subdivided evenly 

among the jobs present in the system, allocation is independent of instantaneous concurrency, and a 

job's processor demand equals its maximum process parallelism. Dynamic differs from Equipartition 

in that allocation depends on the actual degree of concurrency. Applications request processors as their 

process parallelism increases, and release those they no longer need. Consequently, Dynamic typically 

induces more processor releases and reallocations than Equipartition. An issue with equipartitioning, 

used in Dynamic and Equipartition, is that small jobs are &vored. Moreover, as smaller jobs typically 

receive a relatively larger fraction of their processor request, their execution efiGciency may be low. 

RRjob produced the longest response times as it does not take advantage of the increase in ef­

ficiency that typically results from folding, and because progress may be impeded when only a proper 

subset of a job's processes are active. Dynamic outperformed Equipartition by about 10% for the 

plications considered. The decrease in job idle times it produced was greater than the additional over­

head associated with the larger number of processor releases and reallocations it normally induces. 

In another dynamic policy, proposed by Zahoijan and McCann [Zahoijan 90], allocation varies 

with job parallelism. If an allocation request cannot be satisfied, it waits in a FIFO queue. Pending re­

quests are serviced on FCFS basis. However, a new job is given priority for the allocation of its first 

processor. If there are no free processors, one is preempted from a job that is allocated two or more 

processors. An application may receive an un&ir share of processors under this scheme. For example, 

a new job may be allocated a single processor while an earlier arrival is allocated many more. 
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4.1.1 Problem Statement and Goals 

Equipartitioning has been widely evaluated as a dynamic space sharing implementation tech­

nique [Tucker 89][Leutenegger 90][McCann 93][Maricatos 93]. However, there are two issues with it. 

First, it &vors smaller jobs because they can receive a larger fraction of the number of processors they 

requested. Second, the execution e£Gciency of these jobs may be low because they are not folded 

enough. The overall goal of this study of dynamic space sharing is to evaluate and compare a wide 

range of dynamic policies that diSer in the folding method and in the criteria used in selecting which 

applications to service. The specific goals are to: 

• Investigate the tradeoff between reducing the execution times of individual ^plications 

and reducing the overall mean response time. The effects on performance of giving priority 

to smaller and shorter jobs are also investigated. 

• Study the influence of the increase in efiBciency that results from folding on the design of 

dynamic space sharing policies. 

• Compare dynamic space sharing policies to the Multifolding First Fit (MFFF) static space 

sharing job scheduling scheme. MFFF outperformed several other static policies, as can be 

seen in Chapter 3. 

4.2 Workload Model 

The results presented in Chapters 2 and 3 show that the increase in efficiency that typically 

results from folding has a strong influence on the performance of static space sharing policies. To 

evaluate the influence of this factor under dynamic space sharing, three workload classes are used. In 

the first, the jobs have linear speedup. In the second, they have speedup curves that correspond to a 

large sequence of consecutive sequential and parallel phases (Figure 4.1). The fiaction of sequential 

code is assumed constant for the lifetime of the job. The efiBciency values when the jobs are allocated 

the maximum mmiber of processors they can use, «, is assumed to be distributed uniformly over 
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Figure 4.1: sequence of parallel and sequential phases 

[0.4,0.9]. The corresponding speedup curve is monotonically increasing, and is denoted by MISP. 

Many applications have a structure similar to that shown in Figure 4.1. For example, many 

parallel jobs consist of processes that iterate over a subset of the input data between successive serial 

phases. Moreover, MISP is a good approximation to the speedup of many jobs when the number of 

processors used is not too large, including the jobs specified below. 

The third class of jobs consists of thirty applications whose execution times, efficiency 

curves, and processor demands are specified or can be derived easily from Table 4.1. The first ten 

applications use a maximum of 16 processors and have the characteristics defined in the table. The 

column ^(p) contains the efficiency of the applications when they execute on p processors. Twenty 

additional job characteristics are derived from Table 4.1 by doubling and quadrupling the problem 

sizes and number of processors, and assuming the applications scale up. For example, the applica­

tions 11 and 21 in Table 4.2 are derived from application 1 in Table 4.1. The job characteristics in 

Table 4.1 were derived from performance data in [Naik 93a] and [Bailey 92]. Where the performance 

data is not provided for a value of p, linear interpolation of the efficiency curve is used to derive the 

missing execution efficiency. 

It is assumed that programs are capable of reconfiguring themselves to run on the processors 

they are allocated. Threads packages augmented with functions that support application reconfigura­

tion were used in implementing dynamic space sharing policies in shared-memory multiprocessors 

[Tucker 89][McCann 93]. Schemes that support explicit data migration were proposed for NUMAs 
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Table 4.1: Execution profiles of specific ^plications 

Application ^1) ^2) ^8) ^16) 

1 158 0.967 0.897 0.789 0.559 

2 185 0.977 0.928 0.913 0.884 

3 357 0.977 0.928 0.882 0.786 

4 1916 0.984 0.943 0.877 0.768 

5 1553 0.982 0.948 0.903 0.844 

6 657 0.949 0.842 0.720 0.604 

7 2532 0.952 0.892 0.787 0.665 

g 6141 0.986 0.966 0.929 0.882 

9 9740 0.960 0.915 0.853 0.753 

10 28794 0.979 0.935 0.880 0.820 

Table 4.2: Sample of derived execution profiles 

Application ^1) ^4) 4(8) «16) ^32) 

11 315 0.967 0.897 0.789 0.559 

Application ^(1) 00
 

K16) ^32) K64) 

21 630 0.967 0.897 0.789 0.559 
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[Markatos 93] and distributed-memory systems [Naik 93a]. 

4.3 Allocation Policies 

The dynamic allocation schemes defined below and variants of the second policy are studied. It 

is assumed that a new job requests a number, n, of processors upon arrival. The target system consists 

of P identical processors, and allocation is topology-independent. 

Dynamic Equipartitioning (DEQP): The processors are divided evenly among the applications in the 

system. They each receive min(n,int(P/Ai)) processors, where Mis their number. Load levels that result 

in more than P applications in the system are not considered. The applications are sorted in a queue in 

the non-decreasing order of their processor demands, and any remaining processors are allocated as 

follows; The queue is scanned, and a job that is allocated fewer than the number of processors it re­

quested is allocated one more. This procedure is repeated if there are free processors and unsatisfied 

allocation requests at the end of the scan. 

Dynamic Proportional Allocation (DPROP): Each application is allocated max(l,int(n^) proces­

sors. The folding factor is equal to rrax.(\J'IP), where T is the cunent total processor demand. The 

remaining processors are allocated to the earliest arrivals, one to each, under the constraint that an 

^plication is not allocated more than its processor demand. 

Dynamic FCFS (DFCFS): A new application is allocated niin(«,i<T') processors, where FP is the 

number of free processors. It waits if FP=0. When processors are released, the earliest arrival that is 

allocated less than its processor demand receives amin-pJFP) additional processors, where p is that 

job's current allocation. This procedure is repeated until all requests are satisfied or FP=Q. 

Dynamic Smallest Job First (DSMJF): The jobs in the system are sorted in the non-decreasing order 

of their processor demands. A job waits if FP=0, otherwise it is allocated vcm(nJFP) processors. When 

an application terminates, the smallest job that is allocated less than its processor demand receives 

min(/i-/7,fP) additional processors. This procedure is repeated until all requests are satisfied or FP=0. 
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Applications are allocated more processors on average under DFCFS and DSMJF. DPROP 

and DEQP reduce waiting times by executing more applications simultaneously, and they take more 

advantage of the efficiency improvement associated with folding. For example, as many as /* jobs can 

be executing simultaneously under DEQP. The goal of DPROP is to improve the &imess characteris­

tics of DEQP by folding ^plications evenly. Note that applications that have small processor requests 

may not be folded under DEQP. 

4.4 Results 

The scheduling effectiveness of the dynamic policies is equal to one because they avoid proces­

sor fragmentation. Their performance is compared using mean response times and fairness curves. 

4.4.1 Simulation Parameters 

Load levels that result in more than P jobs in the system are not considered. During each run, 

the simulator generates 5500 jobs. The performance data of the first 500 jobs is discarded so as to ig­

nore startup effects. The number of runs is such that the mean response times obtained are within 5% 

of the true mean with 95% confidence. 

In some experiments, the applications are selected randomly fi'om the set of thirty applications 

specified in Section 4.2. In these experiments, the mean processor demand N is 32, and the mean exe­

cution time when the ^plications are allocated their processor demand, Tg, is 407.5 time imits. In the 

remaining experiments, the processor demands are uniformly distributed over [2,7^64], and two exe­

cution time distributions are used. The distributions are the uniform over [1,360], and the truncated 

exponential with a mean of 60 and the values outside the interval [1,1000] discarded. As most applica­

tions reported in the literature take more than a few seconds to complete, an appropriate time unit is 5 

to 20 seconds. 

When the number of processors allocated to an application changes as a result of a job arrival 
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or departure, its execution time on the new number of processors is increased by C time units. The 

sources of overhead associated with allocation changes include context switches, extra cache misses, 

and data migration in NUMA multiprocessors. As this overiiead is application and system-dependent, a 

range of overiiead values are considered, as in [Zahoijan 90], Data in [Zahoijan 90] and [Markatos 93] 

indicate that values of C that do not exceed 1 are of most interest. Note that C-l represents a high 

overhead of a few seconds. 

4.4.2 Mean Response Times and Fairness 

Based on mean response times, the ordering of the policies from best to worst under the uni­

form execution times distribution, C<1, and linear speedup is: DSMJF, DFCFS, DEQP, and DPROP 

(e.g.. Figure 4.2). The ordering under the exponential execution times distribution and linear speedup 

is: DSMJF, DEQP, DFCFS, and DPROP (e.g.. Figure 4.3). DPROP outperformed DFCFS slightly 

under this workload model and C=0, but it performed slightly worse than DFCFS when C=1 because 

of the larger number of allocation changes it produces. 
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Figure 4.2: Linear speedup, C=0, uniform size and execution time distributions 
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Figure 4.3; Linear speedup, C=l, uniform size distribution, exponential execution time distribution 

The performance advantage of DSMJF over DEQP under linear speedup increases with C due 

to the significantly higher number of allocation changes DEQP results in (e.g., Table 4.3). For exam­

ple, this performance advantage is less than 5% under the exponential execution times distribution, 

C=0, and Z=0.8, but it is approximately 15% under the same woridoad model and L when C=1 (Figure 

4.3). However, the increase is less significant under the uniform execution times distribution. Under 

this distribution, the advantage of DSMJF over DEQP rises from 22% to 27% when C increases fi"om 

Oto 1 andL=0.8. 

Table 4.3; Relative number of application allocation changes, linear speedup, 
uniform size and execution time distribution 

Dynamic Policy 1=0.4 L=0.6 L=0.i 

DFCFS 1.00 1.00 1.00 

DSMJF 1.00 1.03 1.02 

DPROP 1.50 1.51 1.28 

DEQP 1.64 1.68 1.44 
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Under the remaining workload models, where speedup is sublinear, the ordering of the mean 

response times of the dynamic policies firom best to worst is: DEQP, DPROP, DSMJF, and DFCFS 

(e.g.. Figures 4.4-4.8). This different ordering results from the efSciency advantage of folding. The 

ratio of the mean response times of DPROP and DEQP, /?7'(DPROP)//?7'(DEQP), increases with L, 

but it remains small. For example, it is 106 to 108% under L=\ in Figures 4.4-4.7 and 112% under 

Z=0.8 in Figure 4.8. Because DEQP produces more allocation changes than DPROP, its relative ad­

vantage decreases slightly when C increased. 

DFCFS and DSMJF performed much worse than DEQP. For example, when Z,=0.8, the ratio 

/{7(DSMJF)/7?7XDEQP) is about 128% under the uniform execution times distribution, 150% under 

the exponential execution times distribution, and 215% when the applications are those defined in Ta­

bles 4.1 and 4.2. These ratios decreased slightly when C increased from 0 to 1. 
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Figure 4.4; MISP speedup, C=0, uniform execution time and size distributions 
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Figure 4.5: MISP speedup, C=l, unifonn execution time and size distributions 
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As speedup is seldom linear and the efficiency of parallel ^plications typically increases sig­

nificantly when they are allocated fewer processors, the policies that fold more ^plications and reduce 

the waiting times, DEQP and DPROP, are expected to be superior to DFCFS and DSMJF in practice. 

DPROP and DEQP outperformed the static space sharing policy MFFF under the uniform and 

exponential execution times distributions defined earlier, including when C=1 (see Figures 4.4-4.7). 

Under these distributions, Tg is much larger than C, and ^plication reconfigurations occur infre­

quently enough for DPROP and DEQP to be superior to MFFF. However, MFFF can outperform these 

policies under higher reconfiguration rates and relative overhead costs, as can be seen in Figure 4.9. 

Here, the execution times are distributed unifonnly over the interval [1,10]. The job arrival rates are 

approximately 35 times larger than those in Figures 4.4 and 4.5, and the rates of application reconfigu­

rations are, accordingly, considerably higher. 
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A disadvantage of DEQP is that it can discriminate against jobs with large processor demands 

much more than DPROP under high system loads, as can be seen in Figures 4.10 and 4.11. These fig­

ures display the feimess curves of DEQP and DPROP under Z,=0.6 and L=1.0. The mean response 

times of large jobs are longer under DEQP, however jobs with small to medium processor requests per­

form better than under DPROP. As allocation in DEQP is based on the even division of processors 

among jobs, smaller applications receive, on average, a larger fraction of the number of processors they 

requested. In choosing between DPROP and DEQP, there is tradeoff between overall mean response 

times and l&imess. DPROP has better &imess characteristics, but its overall mean response times are 

longer. 
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Figure 4.10: Mean response time as a function of job processor demand, C=0,1=0.6 
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Figure 4.11; Mean response time as a function of job processor demand, C=0, Z,=0.6 and 
Z,=1.0, imifoim size distribution, exponential execution time distribution 

4.5 DPROP Variants 

To study the influence of giving priority to smaller and shorter jobs, two variants of DPROP 

are considered. In the first variant, denoted by DPROP-SM, smaller jobs are given priority. Let rij de­

note the number of processors requested by job j, the job's allocation under DPROP-SM is based on a 

new processor demand, ndj, computed by ndj=n/{\+x*njlP), where x is a priority parameter greater 

than zero. When * increases, smaller jobs receive a larger fiaction of tiieir processor demands. Alloca­

tion is as follows: 

1) Compute ndj for all jobs in the system 

2) Compute 5'=Sj ndj 

3) Calculate the folding fector fl=SIP 

4) If#<lthen#=l 

5) For all jobs: allocate max(l,«4/^ processors to job j 

6) Any remaining processors are allocated as in DPROP 

In the second DPROP variant, denoted by DPROP-SH, priority is given to shorter jobs. It is 
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assumed that applications can be classified a priori as normal or long, and allocation is as follows: 

1) Allocate 1 processor to each job in the system 

2) For all jobs do: If job j is long then ndj={ nf-\)lx else ndj= nj-l (x is a priority parame­

ter greater than zero) 

3) Compute 5'=Sj ndj 

4) Calculate the folding &ctor J^^IFP {FP is the number of free processors) 

5) If^<lthen^l 

6) For all jobs: allocate voX.(ndJffi additional processors to job j 

7) Any remaining processors are allocated as in DPROP 

DPROP-SM/m and DPROP-SH/m refer to DPROP-SM and DPROP-SH when x==m. A wide 

range of priority parameters (i.e., values of x) were considered. DPROP-SM/2 outperformed DPROP, 

but it produced slightly longer mean response times than DEQP (e.g.. Figures 4.12-14). An advantage 

of DPROP-SM/2 over DEQP is that it discriminates against large jobs less, as can be seen in Figure 
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Figure 4.12: MISP speedup, uniform size and execution time distributions 
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Figure 4.13; MISP speedup, uniform size distribution, exponential execution time distribution 
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4.15. Increasing x beyond 2 decreased the overall mean response times slightly, but it also resulted in a 

small lengthening of the mean turnaround times of large jobs (e.g.. Figure 4.15). 

In the simulation experiments of DPROP-SH under the third workload class, applications 9, 

10, 19,20,29, and 30 are considered long. A job is considered long if its execution time on the number 

of processors it requested is greater than the mean i(n) (i.e., Fg) in the experiments that use the uniform 

and exponential execution times distributions. 

The biggest improvement in performance obtained with DPROP-SH was achieved under the 

third workload class. Under this workload, the best DPROP-SH mean response times are almost identi­

cal to those of DEQP, and they are sli^tly better than those of DPROP-SM/2. The best results were 

obtained with large values of x (*>16). As x was increased beyond 1, the response times decreased 

rapidly initially, then the rate of decrease slowed down significantly. A problem with large values of x 

is that they degrade the performance of long jobs. The performance of DPROP-SH under an interme­
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Figure 4.15; Mean response time as a fimction of job processor demand, 1=1.0, 
uniform size and execution time distributions 
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diate value of x (x=4) is compared to that of DEQP and DPROP-SM/2 in Figure 4.14, where it is 

shown that DPROP-SH/4 is slightly better than DPROP-SM/2, but worse than DEQP. A problem with 

DPROP-SH is that it is less practical than the other policies as it is difficult to determine or estimate 

the execution times of jobs in advance of their execution. Moreover, DPROP-SH does not offer signifi­

cant advantage over DEQP and DPROP-SM/2. 

4.6 Conclusions 

When the overiiead of application reconfigurations is small, dynamic space sharing is, as ex­

pected, superior to static space sharing. However, when the overhead is high, static space sharing can 

outperform dynamic space sharing significantly, as can be seen in Figure 4.9. Dynamic space sharing 

is expected to be a poor strategy when paralleUsm is fine-grained and allocation changes occur fi-e-

quently (i.e., CITg is large). 

As the efiBciency of parallel applications typically increases significantly when the number of 

allocated processors decreases, DEQP, and DPROP and its variants are expected to outperform 

DFCFS and DSMJF in practice. Overall, DEQP and DPROP-SM/2 are the best dynamic policies 

considered in this study. DEQP produced slightly shorter mean response times than DPROP-SM/2, but 

it discriminated against large jobs significantly more. Based on the mean response time performance 

parameter alone, DEQP, which has commonly been used in implementing dynamic space sharing, is the 

best dynamic policy considered in this study. 

Although DPROP-SH can improve on the performance of DPROP, the improvement is not 

such that DPROP-SH is significantly better than DEQP or DPROP-SM/2. Moreover, DPROP-SH is 

less practical as it requires that the execution times of ^plications be estimated or known a priori. 

A reason why DEQP, DPROP might not be superior to DFCFS and DSMJF is that they can 

result in a large number of implications executing simultaneously. Depending on memory access pat­

terns and the bandwidth of the memory subsystem, the efiBciency of jobs may suffer, and a policy that 
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limits their number may be superior. A natural extension to this woric would be to study of the effect of 

interconnection contention on the performance of dynamic space sharing policies. 
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5 CONCLUSIONS AND FUTURE WORK 

Alternative topology-independent program-based space sharing policies that differ in the fold­

ing method and the job selection criteria are compared using extensive simulation in Chapters 2, 3, and 

4. The results of this comparison lead to the following main conclusions; 

• Traditional allocation algorithms (e.g., first-come-first-served and first-fit), which do not sup­

port ^plication folding, can produce high processor fi-agmentation under medium to high sys­

tem loads even when allocation is topology-independent. As a result, their mean response times 

under general woildoad models start increasing sharply under load levels significantly smaller 

than one, as seen in Chapter 2. Free processors remain idle if their number is smaller than the 

processor demands of the waiting applications, and the efiBciency improvement that typically 

results when ^plications execute on fewer processors is not exploited. 

• In implementing the static space sharing processor allocation strategy, adaptive folding is su­

perior to no folding and unconstrained folding. The major disadvantage of unconstrained fold-

ing is the high folding fi^gmentation it can produce under most system loads. Because released 

processors are not allocated to folded ^plications in static space sharing, a large number of 

processors may remain idle while parallel jobs are executing on fewer than their processor de­

mands. This problem is especially severe under medium loads when many applications are 

folded and the waiting queue is short. The advantage of imconstrained folding over no folding 

is that it exploits the efficiency benefit of allocation reduction. By increasing the maximum 

factor by which ^plications are allowed to be folded with the load, the adaptive approach pre­

vents them fi-om running on too few processors under moderate loads, when released proces­

sors are likely to remain idle for a long time. Ad^tive folding produced higher and more stable 

scheduling effectiveness and shorter mean response times. 
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• The adaptive muitifolding static policy MFFF, wdiich can fold multiple applications when a job 

terminates, is robust and superior to policies that fold at most one application upon a job 

completion. It is robust in that no significant mean response time improvement was obtained 

when priority was given to applications with small processor demands or short execution 

times. Its advantage is that it exploits the efficiency benefit of folding more than the other 

policies. 

• As dynamic space sharing avoids folding firagmentation, it is superior to static space sharing 

provided the overhead of ^plication reconfigurations does not offset the improvement in per­

formance that results from the fi-agmentation reduction. Experimental data obtained on UMA 

and NUMA systems indicates that this overhead is not excessive when parallelism is coarse­

grained and allocation changes are infi'equent [Zahoijan 90][McCann 93][Markatos 93]. 

• Dynamic space sharing policies that reduce waiting times by executing a large number of ap­

plications simultaneously (DEQP, DPROP, and DPROP-SM) are superior to policies that 

limit the number of active applications and reduce execution times (DFCFS and DSMJF). Dy­

namic schemes based on the assumption that applications are classified a priori as short or 

long did not result in significant improvement over DEQP and DPROP-SM. 

An obvious extension to this work is to implement the most promising policies and compare 

their performance. As topology-based allocation can improve interconnection performance significantly 

in distributed-memory systems, the tradeoff between processor fi^gmentation and exploiting locality in 

these systems needs investigation. In particular, folding topology-based schemes should be studied and 

compared to folding topology-independent and no folding topology-based schemes. 

An issue with the static and dynamic policies that resulted in the best performance in this 

study is that they can execute a large number of ^plications concurrently. Depending on parallelism 

granularity and interconnection bandwidth, the efficiency of jobs may suffer because of increased con­

tention for the interconnection subsystem. Another possible extension to this woric is to study the effect 
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of memory subsystem contention on the performance of policies that execute many ^plications simul­

taneously. 
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